精英家教网 > 初中数学 > 题目详情
20.若x2-2x-2=(x2-1)0,则x的值是3.

分析 直接利用零指数幂的性质以及一元二次方程的解法分析得出答案.

解答 解:∵x2-2x-2=(x2-1)0
∴当x2-1≠0,则x≠±1,
则x2-2x-2=1,
解得:x1=-1(不合题意舍去),x2=3,
当x2-1=0,不合题意,
故x=3.
故答案为:3.

点评 此题主要考查了零指数幂的性质以及一元二次方程的解法,正确利用零指数幂的性质是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.因为a•$\frac{1}{a}$=1,所以(a+$\frac{1}{a}$)2=a2+2a•$\frac{1}{a}$+($\frac{1}{a}$)2=a2+$\frac{1}{{a}^{2}}$+2,①
 (a-$\frac{1}{a}$)2=a2-2a•$\frac{1}{a}$+($\frac{1}{a}$)2=a2+$\frac{1}{{a}^{2}}$-2    ②
所以由①得:a2+$\frac{1}{{a}^{2}}$=(a+$\frac{1}{a}$)2-2或由②得:a2+$\frac{1}{{a}^{2}}$=(a-$\frac{1}{a}$)2+2
那么a4+$\frac{1}{{a}^{4}}$=(a2+$\frac{1}{{a}^{2}}$)2-2
试根据上面公式的变形解答下列问题:
(1)已知a+$\frac{1}{a}$=2,则下列等式成立的是C
①a2+$\frac{1}{{a}^{2}}$=2;②a4+$\frac{1}{{a}^{4}}$=2;③a-$\frac{1}{a}$=0;④(a-$\frac{1}{a}$)2=2;
A.①B.①②C.①②③D.①②③④
(2)已知a+$\frac{1}{a}$=-2,求下列代数式的值:
①a2+$\frac{1}{{a}^{2}}$;②(a-$\frac{1}{a}$)2;③a4+$\frac{1}{{a}^{4}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,CD⊥AB于点D,点F是BC上任意一点,FE⊥AB于点E,且∠1=∠2,∠3=80°,求∠BCA的度数.
解:∵CD⊥AB,FE⊥AB,
∴∠CDE=∠FEB=90°
∴CD∥EF(同位角相等,两直线平行)
∴∠2=∠FCD(两直线平行,同位角相等)
∵∠1=∠2,
∴∠1=∠FCD.
∴DG∥BC(内错角相等,两直线平行)
∴∠BCA=∠3=80°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:

请根据图中信息,解答下列问题
(1)该调查的样本容量为200,a=12%,b=36%,“常常”对应扇形的圆心角为108°
(2)请你补全条形统计图;
(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在平面直角坐标系中,O为原点,点A(2,0),点C(0,4),矩形OABC的对角线的交点为M,点P(2,3).
(1)直线OB的解析式为y=2x;
(2)过点P且与直线OB平行的直线的解析式为y=2x-1;
(3)点M的坐标为(1,2);
(4)点Q在直线AC上,△QMB的面积与△PMB的面积相等,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在四边形ABCD中,∠C=90°,∠D=130°,AP平分∠BAD,BP平分∠ABC,求∠APB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,AB⊥CD,CD⊥BD,∠A=∠FEC,以下是小明同学证明EF∥CD的过程,请你在横线上补充完整其说理过程或理由.
证明:∵AB⊥CD,CD⊥BD(已知)
∴∠ABD=∠CDB=90°(垂直定义)
∴∠ABD+∠CDB=180°.
∴AB∥(CD)(同旁内角互补,两直线平行)
∵∠A=∠FEC(已知)
∴AB∥(EF)(同位角相等,两直线平行)
∴(CD)∥(EF)(平行于同一条直线的两条直线平行)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.若a>0,b<0,求使得|x-a|+|x-b|=a-b成立的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图(1),在Rt△AOB中,∠A=90°,∠AOB=60°,OB=2$\sqrt{3}$,∠AOB的平分线OC交AB于C,过O点做与OB垂直的直线ON.动点P从点B出发沿折线BC-CO向终点O运动,运动时间为t秒,同时动点Q从点C出发沿线段CO及直线ON运动,当点P到达点O时P、Q同时停止运动.
(1)求OC、BC的长;
(2)当点P与点Q的速度都是每秒1个单位长度的速度运动时,设△CPQ的面积为S,求S与t的函数关系式;
(3)当点P运动到OC上时,在直线OB上有一点D,当PD+BP最小时,在直线OB上有一点E,若以B、P、Q、E为顶点的四边形为平行四边形,设点P、Q的运动路程分别为a、b,求a与b满足的数量关系.

查看答案和解析>>

同步练习册答案