分析 (1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;
(2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定理可得∠CBE=180×$\frac{1}{4}$=45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四边形ABCD是正方形.
解答 证明:(1)在△ADE与△CDE中,
$\left\{\begin{array}{l}{AD=CD}\\{DE=DE}\\{EA=EC}\end{array}\right.$,
∴△ADE≌△CDE,
∴∠ADE=∠CDE,
∵AD∥BC,
∴∠ADE=∠CBD,
∴∠CDE=∠CBD,
∴BC=CD,
∵AD=CD,
∴BC=AD,
∴四边形ABCD为平行四边形,
∵AD=CD,
∴四边形ABCD是菱形;
(2)∵BE=BC
∴∠BCE=∠BEC,
∵∠CBE:∠BCE=2:3,
∴∠CBE=180×$\frac{2}{2+3+3}$=45°,
∵四边形ABCD是菱形,
∴∠ABE=45°,
∴∠ABC=90°,
∴四边形ABCD是正方形.
点评 本题主要考查了正方形与菱形的判定及性质定理,熟练掌握定理是解答此题的关键.
科目:初中数学 来源: 题型:选择题
A. | 40° | B. | 45° | C. | 50° | D. | 10° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ![]() | B. | ![]() | C. | ![]() | D. | ![]() |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 95分,95分 | B. | 95分,90分 | C. | 90分,95分 | D. | 95分,85分 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
类型 | 频数 | 频率 |
A | 30 | x |
B | 18 | 0.15 |
C | m | 0.40 |
D | n | y |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com