精英家教网 > 初中数学 > 题目详情

【题目】课外阅读是提高学生素养的重要途径.某中学为了了解全校学生课外阅读情况,随机抽查了200名学生,统计他们平均每天课外阅读时间(小时).根据每天课外阅读时间的长短分为ABCD四类,下面是根据所抽查的人数绘制的两幅不完整的统计图表,请根据图中提供的信息,解答下面的问题:

200名学生平均每天课外阅读时间统计表

类别

时间t(小时)

人数

A

t0.5

40

B

0.5≤t1

80

C

1≤t1.5

60

D

t≥1.5

a

1)求表格中a的值,并在图中补全条形统计图:

2)该校现有1800名学生,请你估计该校共有多少名学生课外阅读时间不少于1小时?

3)请你根据上述信息对该校提出相应的建议

【答案】1a的值为20,见解析;(2720;(3)课外活动应该多增加阅读量和多运动.

【解析】

1)用抽查的学生的总人数减去ABC三类的人数即为D类的人数也就是a的值,并补全统计图;

2)先求出课外阅读时间不少于1小时的学生占的比例,再乘以1800即可.

3)结合图上信息,符合实际意义即可.

120040806020(名),

a的值为20

补全条形统计图如下:

21800×720(名),

答:该校共有720名学生课外阅读时间不少于1小时;

3)合理即可.如:课外活动应该多增加阅读量和多运动.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过x轴上的点A10)和点By轴上的点C,经过BC两点的直线为

①求抛物线的解析式.

②点PA出发,在线段AB上以每秒1个单位的速度向B运动,同时点EB出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,PBE的面积最大并求出最大值.

③过点A于点M,过抛物线上一动点N(不与点BC重合)作直线AM的平行线交直线BC于点Q.若点AMNQ为顶点的四边形是平行四边形,求点N的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,抛物线y=ax2+bx-3x轴交于A-10),B30)两点,与y轴交于点C

1)求抛物线的解析式.

2)如图,直线BC下方的抛物线上有一点D,过点DDEBC于点E,作DF平行x轴交直线BC于点F,求△DEF周长的最大值.

3)已知点M是抛物线的顶点,点Ny轴上一点,点Q是坐标平面内一点,若点P是抛物线上一点,且位于抛物线对称轴的右侧,是否存在以点PMNQ为顶点且以PM为边的正方形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到县城城南大道的距离为米的点处.这时,一辆出租车由西向东匀速行驶,测得此车从处行驶到处所用的时间为秒,且

之间的路程;

请判断此出租车是否超过了城南大道每小时千米的限制速度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,动点P沿B→A→D→C→B路线运动,点MAB边上的一点,且MBAB,已知AB4BC2AP2MP,则点P到边AD的距离为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC是⊙O的直径,弦BDAOE,连接BC,过点OOFBCF,若BD=8cm,AE=2cm,则OF的长度是(  )

A. 3cm B. cm C. 2.5cm D. cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一个交点为C.

(1)求抛物线的解析式;

(2)点P是第一象限抛物线上的点,连接OP交直线AB于点Q.设点P的横坐标为m,PQ与OQ的比值为y,求y与m的关系式,并求出PQ与OQ的比值的最大值;

(3)点D是抛物线对称轴上的一动点,连接OD、CD,设ODC外接圆的圆心为M,当sinODC的值最大时,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+4的图象与x轴交于点A40)和点D-10),与y轴交于点C,过点CBC平行于x轴交抛物线于点B,连接AC
1)求这个二次函数的表达式;
2)点M从点O出发以每秒2个单位长度的速度向点A运动;点N从点B同时出发,以每秒1个单位长度的速度向点C运动,其中一个动点到达终点时,另一个动点也随之停动,过点NNQ垂直于BCAC于点Q,连结MQ
①求△AQM的面积S与运动时间t之间的函数关系式,写出自变量的取值范围;当t为何值时,S有最大值,并求出S的最大值;
②是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xoy中,函数的图象与一次函数y=kx-k的图象的交点为A(m,2).

(1)求一次函数的解析式;

(2)设一次函数y=kx-k的图象与y轴交于点B,若P是x轴上一点, 且满足PAB的面积是4,

直接写出点P的坐标.

查看答案和解析>>

同步练习册答案