精英家教网 > 初中数学 > 题目详情
已知∠A=40°18′,∠B=40°17′30″,∠C=40.18°,则(  )
A、∠A>∠B>∠CB、∠B>∠A>∠CC、∠C>∠A>∠BD、∠A>∠C>∠B
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

矩形是平行四边形.
 
(判断对错)

查看答案和解析>>

科目:初中数学 来源: 题型:

在一张长方形纸片ABCD中,AB=25cm,AD=20cm,现将这张纸片按下列图示方法折叠,请解决下列问题.
(1)如图(1),折痕为DE,点A的对应点F在CD上,求折痕DE的长;
(2)如图(2),H,G分别为BC,AD的中点,A的对应点F在HG上,折痕为DE,求重叠部分的面积;
(3)如图(3),在图(2)中,把长方形ABCD沿着HG对开,变成两张长方形纸片,将两张纸片任意叠合后,判断重叠四边形的形状,并证明;
(4)在(3)中,重叠四边形的周长是否存在最大值或最小值?如果存在,试求出来;如果不存在,试简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

问题情境:数学活动课上,老师提出了一个问题:如图①,已知在△ABC中,∠ACB=90°,AC=BC,点D为直线AB上的一动点(点D不与点A,B重合)连接CD,以点C为旋转中心,将CD逆时针旋转90°得到CE,连接BE,试探索线段AB,BD,BE之间的数量关系.
小组展示:“希望”小组展示如下:解:线段AB,BD,BE之间的数量关系是AB=BE+BD.
证明:如图①∵∠ACB=90°,∠DCE=90°
∴∠ACB=∠DCE
∴∠ACB=∠DCB=∠DCE-∠DCB
即∠ACD=∠BCE
∵CE是由CD旋转得到.
∴CE=CD
则在△ACD和△BCE中,
AC=BC
∠ACD=∠BCE
CD=CE

∴△ACD≌△BCE(依据1)
∴AD=BE(依据2)
∵AB=AD+BD
∴AB=BE+BD
反思与交流:
(1)上述证明过程中的“依据1”和“依据2”分别是指:
依据1:
 

依据2:
 

(2)“腾飞”小组提出了与“希望”小组不同的意见,认为还有两种情况需要考虑,你根据他们的分类情况直接写出发现的结论:
①如图②,当点D在线段AB的延长线上时,三条点段AB,BD,BE之间的数量关系是
 

②如图③,当点D在线段BA的延长线上时,三条线段AB,BD,BE之间的数量关系是
 

(3)如图④,当点D在线段BA的延长线上时,若CD=4,线段DE的中点为F,连接FB,求FB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A开始沿折线AC-CB-BA运动,点P在AC,CB,BA边上运动的速度分别为每秒3,4,5 个单位.直线l从与AC重合的位置开始,以每秒
43
个单位的速度沿CB方向平行移动,即移动过程中保持l∥AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动
(1)①当t=3秒时,点P走过的路径长为
 
;②当t=
 
秒时,点P与点E重合;③当t=
 
秒时,PE∥AB;
(2)当点P在AC边上运动时,将△PEF绕点E逆时针旋转,使得点P的对应点M落在EF上,点F的对应点记为点N,当EN⊥AB时,求t的值;
(3)当点P在折线AC-CB-BA上运动时,作点P关于直线EF的对称点,记为点Q.在点P与直线l运动的过程中,若形成的四边形PEQF为菱形,请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,AC、BD相交于O,且AC:BD=1:
3
,若AB=2.则菱形ABCD的面积是(  )
A、2
3
B、
3
C、
3
2
D、
3
4

查看答案和解析>>

科目:初中数学 来源: 题型:

下列说法中,正确的是(  )
A、菱形的对角线相等B、两组邻边分别相等的四边形是菱形C、对角线互相垂直的四边形是菱形D、菱形的对角线互相垂直平分

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,对角线AC,BD的长分别为8和6,将△BCD平移到△EBA,则四边形AECD的面积为(  )
A、36B、48C、72D、96

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

把下列各数填人相应的括号内:
-3,-0.4,π,-|-4|,-
22
7
,0.333…,1.753,-
π
7
,0,0.4262262226….
整数集合:{______…};
分数集合:{______…};
有理数集合:{______…};
非负数集合:{______…}.

查看答案和解析>>

同步练习册答案