精英家教网 > 初中数学 > 题目详情
若将函数y=2x2的图象向左平移1个单位,再向上平移2个单位,可得到的抛物线是               .
y=2(x+1)2+2.

试题分析:∵函数y=2x2的图象向左平移1个单位,再向上平移2个单位,
∴平移后抛物线顶点坐标为(-1,2).
∴得到的抛物线是y=2(x+1)2+2.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB的两个交点之间的距离为,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y轴的抛物线条数是
A.13B.14C.15D.16

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:
x

-1
0
  1
2
3
4

y

8
3
0
-1
0
3

(1)求该二次函数的解析式;
(2)当x为何值时,y有最小值,最小值是多少?
(3)若A(m,y1),B(m+2,y2)两点都在该函数的图象上,计算当m 取何值时,

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线的图象向右移动3个单位,再向下移动4个单位,解析式是                  ;它的顶点坐标是            .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

平面直角坐标系xOy中,抛物线y=ax2-4ax+4a+c与x轴交于点A、B,与y轴的正半轴交于点C,点A的坐标为(1,0),OB=OC.

(1)求此抛物线的解析式;
(2)若点P是线段BC上的一个动点,过点P作y轴的平行线与抛物线在x轴下方交于点Q,试问线段PQ的长度是否存在最大值?若存在,求出其最大值;若不存在,请说明理由;
(3)若此抛物线的对称轴上的点M满足∠AMC=45°,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某批发商以每件50元的价格购进400件T恤.若以单价70元销售,预计可售出200件.批发商的销售策略是:第一个月为增加销售量,降价销售,经过市场调查,单价每降低0.5元,可多售出5件,但最低单价不低于购进的价格;第一个月结束后,将剩余的T恤一次性清仓销售,清仓时单价为40元.设第一个月单价降低x元.
(1)根据题意,完成下表:
 
每件T恤的利润(元)
销售量(件)
第一个月
 
 
清仓时
 
 
(2)T恤的销售单价定为多少元时,该批发商可获得最大利润?最大利润为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成,若花园的BC边长为x米,花园的面积为y(m2

(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)满足条件的花园面积能达到200m2吗?若能,求出此时x的值;若不能,说明理由;
(3)请结合题意,判断当x取何值时,花园的面积最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线的顶点坐标是              

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB为半圆的直径,点P为AB上一动点.动点P从点A 出发,沿AB匀速运动到点B,运动时间为t.分别以AP与PB为直径作半圆,则图中阴影部分的面积S与时间t之间的函数图象大致为(   )


A.                  B.                C.             D.

查看答案和解析>>

同步练习册答案