精英家教网 > 初中数学 > 题目详情

【题目】如图所示,已知AB为⊙O的直径,AC为弦,ODBC , 交ACDBC=4 cm.

(1)求证:ACOD
(2)求OD的长;

【答案】
(1)

证明:∵AB是⊙O的直径,

∴∠C=90°.

ODBC

∴∠ADO=∠C=90°.∴ACOD.


(2)

解:∵ODBC

又∵OAB的中点,

OD是△ABC的中位线.

OD= BC= ×4=2(cm).


【解析】(1)证明:∵AB是⊙O的直径,
∴∠C=90°.
∵OD∥BC,
∴∠ADO=∠C=90°.∴AC⊥OD.
(2)∵OD∥BC,
又∵O是AB的中点,
∴OD是△ABC的中位线.
∴OD= BC= ×4=2(cm).
【考点精析】解答此题的关键在于理解三角形中位线定理的相关知识,掌握连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半,以及对圆周角定理的理解,了解顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】边长为4cm的正方形ABCD绕它的顶点A旋转180°,顶点B所经过的路线长为 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如上图,反比例函数的图象位于第一、三象限,其中第一象限内的图象经过点A12),请在第三象限内的图象上找一个你喜欢的点P,你选择的P点坐标为    

【答案】-1-2)(答案不唯一).

【解析】试题分析:根据第一象限内的图象经过点A12先求出函数解析式,给x一个值负数,求出y值即可得到坐标.

试题解析:图象经过点A12),

解得k=2

函数解析式为y=

x=-1时,y==-2

∴P点坐标为(-1-2)(答案不唯一).

考点:反比例函数图象上点的坐标特征.

型】填空
束】
13

【题目】y轴右侧且平行于y轴的直线l被反比例函数)与函数)所截,当直线l向右平移4个单位时,直线l被两函数图象所截得的线段扫过的面积为__________平方单位.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知yx的反比例函数,且当x=-4时,y=,

1)求这个反比例函数关系式和自变量x的取值范围;

2求当x=6时函数y的值.

【答案】1 2

【解析】整体分析

(1)由反比例函数的这定义求k值,确定x的取值范围;(2)x=6代入(1)中求得的反比例函数的解析式.

:(1设反比例函数关系式为

则k=-4×=-2,

所以个反比例函数关系式是,自变量x的取值范围是x≠0.

(2)当x=6时, ==-.

型】解答
束】
18

【题目】如图,函数y= y= - x+4的图像交点为AB,原点为O,求AOB面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有下列说法:①若DE∥AB,则∠DEF+∠EFB=180;

②能与∠DEF构成内错角的角的个数有2个;③能与∠BFE构

成同位角的角的个数有2个;④能与∠C构成同旁内角的角的个数有4个.其中结论正确的是( )

A. ①② B. ③④ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形(长方形),点AC的坐标分别为A100 ),C04),点DOA的中点,点P在线段BC边上运动,当ODP是腰长为5的等腰三角形时,点P的坐标为 ____________________________________ .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如下图所示,利用关于原点对称的点的坐标的特点,作出与四边形ABCD关于原点对称的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.

(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;

(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知两直线L1y=k1x+b1L2y=k2x+b2,若L1L2,则有k1k2=﹣1

1)应用:已知y=2x+1y=kx﹣1垂直,求k

2)直线经过A23),且与y=x+3垂直,求解析式.

查看答案和解析>>

同步练习册答案