精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:
①△AED≌△AEF;②
AE
BE
=
AD
CD
;③△ABC的面积等于四边形AFBD的面积;
④BE2+DC2=DE2  ⑤BE+DC=DE
其中正确的是(  )
分析:①根据旋转的性质知∠CAD=∠BAF,AD=AF,因为∠BAC=90°,∠DAE=45°,所以∠CAD+∠BAE=45°,可得∠EAF=45°=∠DAE,由此即可证明△AEF≌△AED;
②当△ABE∽△ACD时,该比例式成立;
③根据旋转的性质,△ADC≌△ABF,进而得出△ABC的面积等于四边形AFBD的面积;
④据①知BF=CD,EF=DE,∠FBE=90°,根据勾股定理判断.
⑤根据①知道△AEF≌△AED,得CD=BF,DE=EF;由此即可确定该说法是否正确;
解答:解:①根据旋转的性质知∠CAD=∠BAF,AD=AF,
∵∠BAC=90°,∠DAE=45°,
∴∠CAD+∠BAE=45°.
∴∠EAF=45°,
∴△AED≌△AEF;
故本选项正确;

②∵AB=AC,
∴∠ABE=∠ACD;
∴当∠BAE=∠CAD时,
△ABE∽△ACD,
AE
BE
=
AD
CD

当∠BAE≠∠CAD时,
△ABE与△ACD不相似,即
AE
BE
AD
CD

∴此比例式不一定成立;
故本选项错误;

③根据旋转的性质知△ADC≌△AFB,
∴S△ABC=S△ABD+S△ABF=S四边形AFBD,即三角形ABC的面积等于四边形AFBD的面积;
故本选项正确;

④∵∠FBE=45°+45°=90°,
∴BE2+BF2=EF2
∵△ADC绕点A顺时针旋转90°后,得到△AFB,
∴△AFB≌△ADC,
∴BF=CD,
又∵EF=DE,
∴BE2+DC2=DE2
故本选项正确;

⑤根据①知道△AEF≌△AED,得CD=BF,DE=EF,
∴BE+DC=BE+BF>DE=EF,即BE+DC>DE,
 故本选项错误;
综上所述,正确的说法是①③④;
故选C.
点评:此题主要考查了图形的旋转变换以及全等三角形的判定等知识,解题时注意旋转前后对应的相等关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案