精英家教网 > 初中数学 > 题目详情
如图,直线y=x+3与坐标轴分别交于A、B两点,抛物线y=ax2+bx-3a经过点A、B,顶点为C,连结CB并延长交x轴于点E,点D与点B关于抛物线的对称轴MN对称。
(1)求抛物线的解析式及顶点C的坐标;
(2)求证:四边形ABCD是直角梯形。

解:(1)∵直线y=x+3与坐标轴分别交于A、B两点,
当y=0时,x=-3,
∴点A的坐标为(-3,0),
当x=0时,y= 3,
∴点B的坐标为(0,3),
把A(-3,0)、B(0,3)代入中得:
 
解得
∴抛物线的解析式为

∴C点的坐标为(-1,4)。
(2)∵A(-3,0)、B(0,3)、C(-1,4),
∴OA=OB=3,AN=2,CN=4,CM=MB=1,
在Rt△AOB中,
在Rt△ANC中,
在Rt△CMB中,

∴∠ABC=90°,
∵点D、B关于对称轴CN对称,∠BCM=45°;
∴∠DCM=45°,则∠DCB=90°;
∴DC∥AB ;
∵AD≠CB ;
∴四边形ABCD是直角梯形。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,直线:y1=kx+b与抛物线:y2=x2+bx+c交于点A(-2,4),B(8,2).精英家教网
(1)求出直线解析式;
(2)求出使y1>y2的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,直线a、b都与直线c相交,给出下列条件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判断a∥b的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,直线AB、CD相交于点E,EF⊥AB于E,若∠CEF=59°,则∠AED的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线y=6-x交x轴、y轴于A、B两点,P是反比例函数y=
4
x
(x>0)
图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF•BE=(  )
A、8
B、6
C、4
D、6
2

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,直线a∥c,b∥c,直线d与直线a、b、c相交,已知∠1=60°,求∠2、∠3的度数(可在图中用数字表示角).

查看答案和解析>>

同步练习册答案