精英家教网 > 初中数学 > 题目详情
已知等边三角形△ABC和点P,过点P作三边AB、AC、BC的平行线分别交AC、BC、AB于F、G、E,如图①,点P在BC边上可得PE+PF+PG=BC.当点P在△ABC内部时(如图②),点P在△ABC外部时如图③,这两种情况下是否还存在PE+PF+PG=BC的结论?若成立请给予证明,若不成立,那么PE、PF、PG与BC又有怎样的关系,请写出你的猜想,不需证明.
分析:(1)如图②,延长FP,与BC交于点D,即FD∥AB,由等边三角形△ABC,同时PE∥BC,PG∥AC,PF∥AB,即可推出∠A=∠B=∠C=∠PGD=∠PDG=∠AEP=∠CFP=60°,即可确定PG=DG,PE=BD,PF=CG,由BC=BD+DG+CG,即可推出BC=PE+PF+PG;
(2)如图③,作EH∥AC,交BG于点H,由等边三角形的性质和平行线的性质,以及等腰梯形的性质即可推出PE=HG,PG=EH=BH,PF=CG,即可推出PE+PG=BG,BG=BC+PF,通过等量代换即可推出PE+PG-PF=BC.
解答:解:(1)如图②,延长FP,与BC交于点D,
∵等边三角形△ABC,
∴∠A=∠B=∠C=60°
∵PE∥BC,PG∥AC,PF∥AB,
∴∠A=∠B=∠C=∠PGD=∠PDG=∠AEP=∠CFP=60°,EP=BD,
∴△PDG为等边三角形,四边形PECG为等腰梯形,
∴PG=DG,PE=BD,PF=CG,
∵BC=BD+DG+CG,
∴BC=PE+PF+PG,

(2)如图③,点P在△ABC外部时,PE+PF+PG=BC的结论不成立,
PE、PF、PG与BC的关系为:PE+PG-PF=BC.
点评:本题主要考查等边三角形的性质,平行线的性质,等腰梯形的判定及性质,关键在于结合图形正确地作出辅助线,推出相等的角和边.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).
(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;
(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;
(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:
(1)DE=1;
(2)AB边上的高为
3

(3)△CDE∽△CAB;
(4)△CDE的面积与△CAB面积之比为1:4.
其中正确的有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

8、附加题:已知等边三角形ABC的一边AB=3,求它的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•天水)如图,已知等边三角形ABC的边长为2,E、F、G分别是边AB、BC、CA的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y与x的函数图象大致是(  )

查看答案和解析>>

同步练习册答案