精英家教网 > 初中数学 > 题目详情

已知:抛物线y=-x2-(m+3)x+m2-12与x轴交于A(x1,0)、B(x2,0)两点,且x1<0,x2>0,抛物线与y轴交于点C,OB=2OA.

(1)求抛物线的解析式;

(2)在x轴上,点A的左侧,求一点E,使△ECO与△CAO相似,并说明直线EC经过(1)中抛物线的顶点D;

(3)过(2)中的点E的直线y=x+b与(1)中的抛物线相交于M、N两点,分别过M、N作x轴的垂线,垂足为,点P为线段MN上一点,点P的横坐标为t,过点P作平行于y轴的直线交(1)中的所求抛物线于点Q.是否存在t值,使∶S△QMN=35∶12,若存在,求出满足条件的t值;若不存在,请说明理由.

答案:
解析:

  评注:本题考查了抛物线的解析式与一元二次方程的关系,另外还考查了直线、三角形、三角形面积等知识.解决本题的关键是确定一元二次方程两根之间的关系、梯形和三角形面积的计算.


练习册系列答案
相关习题

科目:初中数学 来源:江西省高安市2012届九年级第一次模拟考试数学试题 题型:044

已知:抛物线y=a(x-2)2+b(ab<0)的顶点为A,与x轴的交点为B,C(点B在点C的左侧).

(1)直接写出抛物线对称轴方程;

(2)若抛物线经过原点,且△ABC为直角三角形,求a,b的值;

(3)若D为抛物线对称轴上一点,则以A,B,C,D为顶点的四边形能否为正方形?若能,请求出a,b满足的关系式;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:抛物线y=-x2+2x+m-2交y轴于点A(0,2m-7).与直线

y=x交于点B、C(B在右、C在左).

1.求抛物线的解析式

2.设抛物线的顶点为E,在抛物线的对称轴上是否存在一点F,使得,若存在,求出点F的坐标,若不存在,说明理由

3.射线OC上有两个动点P、Q同时从原点出发,分别以每秒个单位长度、每秒2个单位长度的速度沿射线OC运动,以PQ为斜边在直线BC的上方作直角三角形PMQ(直角边分别平行于坐标轴),设运动时间为t秒,若△PMQ与抛物线y=-x2+2x+m-2有公共点,求t的取值范围.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:抛物线y=-x2+2x+m-2交y轴于点A(0,2m-7).与直线
y=x交于点B、C(B在右、C在左).
【小题1】求抛物线的解析式
【小题2】设抛物线的顶点为E,在抛物线的对称轴上是否存在一点F,使得,若存在,求出点F的坐标,若不存在,说明理由
【小题3】射线OC上有两个动点P、Q同时从原点出发,分别以每秒个单位长度、每秒2个单位长度的速度沿射线OC运动,以PQ为斜边在直线BC的上方作直角三角形PMQ(直角边分别平行于坐标轴),设运动时间为t秒,若△PMQ与抛物线y=-x2+2x+m-2有公共点,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源:2012届北京石景山中考二模数学试卷(带解析) 题型:解答题

已知:抛物线y=-x2+2x+m-2交y轴于点A(0,2m-7).与直线
y=x交于点B、C(B在右、C在左).
【小题1】求抛物线的解析式
【小题2】设抛物线的顶点为E,在抛物线的对称轴上是否存在一点F,使得,若存在,求出点F的坐标,若不存在,说明理由
【小题3】射线OC上有两个动点P、Q同时从原点出发,分别以每秒个单位长度、每秒2个单位长度的速度沿射线OC运动,以PQ为斜边在直线BC的上方作直角三角形PMQ(直角边分别平行于坐标轴),设运动时间为t秒,若△PMQ与抛物线y=-x2+2x+m-2有公共点,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北京石景山中考二模数学试卷(解析版) 题型:解答题

已知:抛物线y=-x2+2x+m-2交y轴于点A(0,2m-7).与直线

y=x交于点B、C(B在右、C在左).

1.求抛物线的解析式

2.设抛物线的顶点为E,在抛物线的对称轴上是否存在一点F,使得,若存在,求出点F的坐标,若不存在,说明理由

3.射线OC上有两个动点P、Q同时从原点出发,分别以每秒个单位长度、每秒2个单位长度的速度沿射线OC运动,以PQ为斜边在直线BC的上方作直角三角形PMQ(直角边分别平行于坐标轴),设运动时间为t秒,若△PMQ与抛物线y=-x2+2x+m-2有公共点,求t的取值范围.

 

查看答案和解析>>

同步练习册答案