分析 (1)由圆周角推论可得∠A+∠ABD=90°,由切线性质可得∠CDB+∠ODB=90°,而∠ABD=∠ODB,可得答案;
(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根据勾股定理可求得MN的长.
解答 解:(1)如图,连接OD,
∵AB为⊙O的直径,
∴∠ADB=90°,即∠A+∠ABD=90°,
又∵CD与⊙O相切于点D,
∴∠CDB+∠ODB=90°,
∵OD=OB,
∴∠ABD=∠ODB,
∴∠A=∠BDC;
(2)∵CM平分∠ACD,
∴∠DCM=∠ACM,
又∵∠A=∠BDC,
∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,
∵∠ADB=90°,DM=1,
∴DN=DM=1,
∴MN=$\sqrt{D{M}^{2}+D{N}^{2}}$=$\sqrt{2}$.
点评 本题主要考查切线的性质、圆周角定理、角平分线的性质及勾股定理,熟练掌握切线的性质:圆的切线垂直于过切点的半径是解本题的关键,.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | M<N | B. | M=N | C. | M>N | D. | 不能确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com