精英家教网 > 初中数学 > 题目详情
如图,AB、AC分别是⊙O的直径和弦,D为的中点,DE⊥AC平点E,DE=6cm,CE=2cm。
(1)求证:DE是⊙O的切线;
(2)求弦AC的长;
(3)求直径AB的长。
解:(1)证明:连接OD、OC,
∵D是中点,

∴AE∥OD,
∵DE⊥AE,
∴DE⊥OD,
∴DE是⊙O的切线;
(2)作OF⊥AC于点F,则F为AC中点,可得矩形EFOD,
∴OF=DE=6,
∴OC=OD=FE=CF+CE=CF+2,
在Rt△COF中,由勾股定理有OF2+FC2=OC2=(FC+2)2
∴62+FC2=FC2+4FC+4,
∴FC=8,AC=2FC=16(cm);
(3)由(2)知OF2+FC2=OC2

∴AB=2OC=20(cm)。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知:如图,AB、AC分别切⊙O于B、C,D是⊙O上一点,∠D=40°,则∠A的度数等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图,AB、AC分别为⊙O的直径和弦,D为劣弧AC上一点,DE⊥AB于H交⊙O于E,交AC于点F,P为ED延长线上的一点.
(1)当△PCF满足什么条件时,PC与⊙O相切并说明理由;
(2)当D点在劣弦AC的什么位置时,使AD2=DE•DF,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB、AC分别切⊙O于M、N两点,点D在⊙O上,且∠BDC=60°,则∠A=(  )°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB、AC分别为⊙O的内接正六边形、内接正方形的一边,BC是圆内接n边形的一边,则n等于(  )

查看答案和解析>>

科目:初中数学 来源:1998年全国中考数学试题汇编《四边形》(01)(解析版) 题型:选择题

(1998•湖州)已知:如图,AB、AC分别切⊙O于B、C,D是⊙O上一点,∠D=40°,则∠A的度数等于( )

A.140°
B.120°
C.100°
D.80°

查看答案和解析>>

同步练习册答案