精英家教网 > 初中数学 > 题目详情
9.下列实数中,属于有理数的是(  )
A.$\sqrt{2}$B.$\root{3}{4}$C.πD.$\frac{1}{11}$

分析 根据有理数是有限小数或无限循环小数,可得答案.

解答 解:$\sqrt{2}$,$\root{3}{4}$,π是无理数,
$\frac{1}{11}$是有理数.
故选:D.

点评 本题考查了实数,有理数是有限小数或无限循环小数,无理数是无限不循环小数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.若(x+1)(mx-1)(m是常数)的计算结果中,不含一次项,则m的值为1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.下列各组数是三角形的三边,不能组成直角三角形的一组数是(  )
A.3,4,5B.6,8,10C.1.5,2,2.5D.$\sqrt{3}$,$\sqrt{4}$,$\sqrt{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:
(1)计算:(-2016)0+($\frac{1}{2}$)-2+(-3)3
(2)简算:982-97×99.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.在△ABC中,∠C=90°,∠A=30°,AB=16,则BC的长是8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1所示,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,∠BAC=90°.
(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.
(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.
如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)求∠CBD的度数;
(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是30°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发,以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动,在运动期间,当四边形PQBC为平行四边形时,运动时间为3秒.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.观察下列运算
①由($\sqrt{2}+1$)($\sqrt{2}-1$)=1,得$\frac{1}{\sqrt{2}+1}$=$\sqrt{2}-1$;
②由($\sqrt{3}+\sqrt{2}$)($\sqrt{3}-\sqrt{2}$)=1,得$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\sqrt{3}-\sqrt{2}$;
③由($\sqrt{4}$$+\sqrt{3}$)($\sqrt{4}$$-\sqrt{3}$)=1,得$\frac{1}{\sqrt{4}+\sqrt{3}}$=$\sqrt{4}$$-\sqrt{3}$;
④由($\sqrt{5}$$+\sqrt{4}$)($\sqrt{5}$$-\sqrt{4}$)=1,得$\frac{1}{\sqrt{5}+\sqrt{4}}$=$\sqrt{5}$$-\sqrt{4}$;

(1)通过观察,将你发现的规律用含有n的式子表示出来.
(2)利用你发现的规律,计算:$\frac{1}{\sqrt{2}+1}$$+\frac{1}{\sqrt{3}+\sqrt{2}}$$+\frac{1}{\sqrt{4}+\sqrt{3}}$$+\frac{1}{\sqrt{5}+\sqrt{4}}$+…+$\frac{1}{\sqrt{2017}+\sqrt{2016}}$.

查看答案和解析>>

同步练习册答案