【题目】在平行四边形ABCD中,点E是AD边上的点,连接BE.
(1)如图1,若BE平分∠ABC,BC=8,ED=3,求平行四边形ABCD的周长;
(2)如图2,点F是平行四边形外一点,FB=CD.连接BF、CF,CF与BE相交于点G,若∠FBE+∠ABC=180°,点G是CF的中点,求证:2BG+ED=BC.
【答案】(1)26;(2)见解析
【解析】
(1)由平行四边形的性质得出AD=BC=8,AB=CD,AD∥BC,由平行线的性质得出∠AEB=∠CBE,由BE平分∠ABC,得出∠ABE=∠CBE,推出∠ABE=∠AEB,则AB=AE,AE=AD﹣ED=BC﹣ED=5,得出AB=5,即可得出结果;
(2)连接CE,过点C作CK∥BF交BE于K,则∠FBG=∠CKG,由点G是CF的中点,得出FG=CG,由AAS证得△FBG≌△CKG,得出BG=KG,CK=BF=CD,由平行四边形的性质得出∠ABC=∠D,∠BAE+∠D=180°,AB=CD=CK,AD∥BC,由平行线的性质得出∠DEC=∠BCE,∠AEB=∠KBC,易证∠EKC=∠D,∠CKB=∠BAE,由AAS证得△AEB≌△KBC,得出BC=BE,则∠KEC=∠BCE,推出∠KEC=∠DEC,由AAS证得△KEC≌△DEC,得出KE=ED,即可得出结论.
(1)∵四边形ABCD是平行四边形,
∴AD=BC=8,AB=CD,AD∥BC,
∴∠AEB=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠ABE=∠AEB,
∴AB=AE,
∵AE=AD﹣ED=BC﹣ED=8﹣3=5,
∴AB=5,
∴平行四边形ABCD的周长=2AB+2BC=2×5+2×8=26;
(2)连接CE,过点C作CK∥BF交BE于K,如图2所示:
则∠FBG=∠CKG,
∵点G是CF的中点,
∴FG=CG,
在△FBG和△CKG中,
∵ ,
∴△FBG≌△CKG(AAS),
∴BG=KG,CK=BF=CD,
∵四边形ABCD是平行四边形,
∴∠ABC=∠D,∠BAE+∠D=180°,AB=CD=CK,AD∥BC,
∴∠DEC=∠BCE,∠AEB=∠KBC,
∵∠FBE+∠ABC=180°,
∴∠FBE+∠D=180°,
∴∠CKB+∠D=180°,
∴∠EKC=∠D,
∵∠BAE+∠D=180°,
∴∠CKB=∠BAE,
在△AEB和△KBC中,
∵,
∴△AEB≌△KBC(AAS),
∴BC=EB,
∴∠KEC=∠BCE,
∴∠KEC=∠DEC,
在△KEC和△DEC中,
∵,
∴△KEC≌△DEC(AAS),
∴KE=ED,
∵BE=BG+KG+KE=2BG+ED,
∴2BG+ED=BC.
科目:初中数学 来源: 题型:
【题目】为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,九(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由九(2)班班长从中随机抽取一张卡片,进行歌咏比赛.试用画树状图或列表的方法表示所有可能的结果,并求出九(1)班和九(2)班抽中不同歌曲的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小林在使用笔记本电脑时,为了散热,他将电脑放在散热架CAD上,忽略散热架和电脑的厚度,侧面示意图如图1所示,已知电脑显示屏OB与底板OA的夹角为135°,OB=OA=25cm,OE⊥AD于点E,OE=12.5cm.
(1)求∠OAE的度数;
(2)若保持显示屏OB与底板OA的135°夹角不变,将电脑平放在桌面上如图2中的所示,则显示屏顶部比原来顶部B大约下降了多少?(参考数据:结果精确到0.1cm.参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.已知两车相遇时快车比慢车多行驶60千米.若快车从甲地到达乙地所需时间为t时,则此时慢车与甲地相距_____千米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校为了解九年级学生对“八礼四仪”的掌握情况,对该年级的500名同学进行问卷测试,并随机抽取了10名同学的问卷,统计成绩如下:
得分 | 10 | 9 | 8 | 7 | 6 |
人数 | 3 | 3 | 2 | 1 | 1 |
(1)计算这10名同学这次测试的平均得分;
(2)如果得分不少于9分的定义为“优秀”,估计这 500名学生对“八礼四仪”掌握情况优秀的人数;
(3)小明所在班级共有40人,他们全部参加了这次测试,平均分为7.8分.小明的测试成绩是8分,小明说,我的测试成绩在班级中等偏上,你同意他的观点吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是( )
A.团队平均日工资不变B.团队日工资的方差不变
C.团队日工资的中位数不变D.团队日工资的极差不变
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形纸片ABCD,将△AMP和△BPQ分别沿PM和PQ折叠(AP>AM),点A和点B都与点E重合;再将△CQD沿DQ折叠,点C落在线段EQ上点F处.
(1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形?(不需说明理由)
(2)如果AM=1,sin∠DMF=,求AB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com