ÒÑÖª£ºÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬¶þ´Îº¯Êýy=-x2+bx+cµÄͼÏóÓëxÖá½»ÓÚA¡¢BÁ½µã£¬µãAÔÚµãBµÄ×ó²à£¬Ö±Ïßy=kx+3Óë¸Ã¶þ´Îº¯ÊýµÄͼÏó½»ÓÚD¡¢BÁ½µã£¬ÆäÖеãDÔÚyÖáÉÏ£¬µãBµÄ×ø±êΪ£¨3£¬0£©£®
£¨1£©ÇókµÄÖµºÍÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽ£®
£¨2£©ÉèÅ×ÎïÏߵĶ¥µãΪC£¬µãFΪÏ߶ÎDBÉÏÒ»µã£¬ÇÒʹµÃ¡ÏDCF=¡ÏODB£¬Çó³ö´ËʱµãFµÄ×ø±ê£®
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÈôµãPΪֱÏßDBÉϵÄÒ»¸ö¶¯µã£¬¹ýµãP×÷xÖáµÄ´¹ÏßÓëÕâ¸ö¶þ´Îº¯ÊýµÄͼÏó½»ÓÚµãE£®ÎÊ£ºÊÇ·ñ´æÔÚÕâÑùµÄµãP£¬Ê¹µÃÒÔµãP¡¢C¡¢E¡¢FΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¿Èô´æÔÚ£¬Çó³öµãPµÄºá×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©±¾ÌâÐèÏȸù¾ÝÖ±Ïßy=kx+3ºÍµãBµÄ×ø±ê´úÈë¼´¿ÉÇó³ökµÄÖµ£¬ÔÙÓеãDµÄ×ø±ê´úÈë¶þ´Îº¯Êýy=-x2+bx+cÖУ¬¼´¿ÉÇó³öb¡¢cµÄÖµ£¬¼´¿ÉÇó³ö´ð°¸£®
£¨2£©±¾ÌâÐèÏȸù¾ÝͼÐεóöµãCµÄ×ø±ê£¬ÔÙ¸ù¾ÝÒÑÖªÌõ¼þµÄ³ö¡ÏODBµÄ¶ÈÊý£¬ÔÙ×ö¹ýµãD×÷´ËÅ×ÎïÏ߶ԳÆÖáµÄ´¹Ïߣ¬´Ó¶øµÃ³öµãFµÄ×ø±ê£®
£¨3£©±¾ÌâÊ×ÏÈÅжϳö´æÔÚÕâÑùµÄµã£¬ÔÙ¸ù¾ÝÒÑÖªÌõ¼þµÃ³öÒÔµãP¡¢C¡¢E¡¢FΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¬ÔÙÉè³öµãPºÍµãEµÄ×ø±ê£¬´Ó¶øµÃ³öxµÄÖµ£¬¼´¿ÉÇó³öµãPµÄºá×ø±ê£®
½â´ð£º½â£º£¨1£©¡ßÖ±Ïßy=kx+3¾¹ýµãB£¨3£¬0£©£¬
¡à¿ÉÇó³ök=-1£®
ÓÉÌâÒâ¿ÉÖª£¬µãDµÄ×ø±êΪ£¨0£¬3£©£®
¡ßÅ×ÎïÏßy=-x
2+bx+c¾¹ýµãBºÍµãD£¬
½âµÃ
¡àÅ×ÎïÏߵĽâÎöʽΪ
y=-x
2+2x+3£»
£¨2£©Èçͼ£¬¿ÉÇ󶥵ãCµÄ×ø±êΪ£¨1£¬4£©£®
ÓÉÌâÒ⣬¿ÉÖª¡ÏODB=45¡ã£®
¹ýµãD×÷´ËÅ×ÎïÏ߶ԳÆÖáµÄ´¹ÏßDG£¬
¿ÉÖªDG=CG=1£¬
ËùÒÔ´Ëʱ¡ÏDCG=45¡ã£¬
ÔòÒ×ÖªµãFµÄ×ø±êΪ£¨1£¬2£©£»
£¨3£©´æÔÚÕâÑùµÄµãP£¬Ê¹µÃÒÔµãP¡¢C¡¢E¡¢FΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ®
ÀíÓÉÈçÏ£ºÓÉÌâÒâÖªPE¡ÎCF£¬
¡àҪʹÒÔµãP¡¢C¡¢E¡¢FΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¬Ö»ÒªÂú×ãPE=CF=2¼´¿É£®
¡ßµãPÔÚÖ±ÏßDBÉÏ£¬
¡à¿ÉÉèµãPµÄ×ø±êΪ£¨x£¬-x+3£©£®
¡ßµãEÔÚÅ×ÎïÏßy=-x
2+2x+3ÉÏ£¬
¡à¿ÉÉèµãEµÄ×ø±êΪ£¨x£¬-x
2+2x+3£©£®
¡àµ±-x+3-£¨-x
2+2x+3£©=2ʱ£¬½âµÃ
x=£»
µ±-x
2+2x+3-£¨-x+3£©=2ʱ£¬½âµÃx=1»òx=2£¬
x=1²»ºÏÌâÒ⣬ÉáÈ¥£®
¡àÂú×ãÌâÒâµÄµãPµÄºá×ø±ê·Ö±ðΪ
x1=£¬
x2=£¬x
3=2£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯Êý½âÎöʽµÄÈ·¶¨¡¢×ø±êµãµÄÇ󷨵È֪ʶµã£®Ö÷Òª¿¼²éѧÉúÊýÐνáºÏµÄÊýѧ˼Ïë·½·¨£®