精英家教网 > 初中数学 > 题目详情
2.解分式方程:$\frac{2x}{2x-5}$-$\frac{1}{2x+5}$=1.

分析 分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.

解答 解:去分母得:4x2+10x-2x+5=4x2-25,
解得:x=-$\frac{15}{4}$,
经检验x=-$\frac{15}{4}$是分式方程的解.

点评 此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,C为线段AB上一点,分别以AC、BC为边在AB的同侧作等边△HAC与等边△DCB,连接DH.
(1)如图1,当∠DHC=90°时,求$\frac{BC}{AC}$的值;
(2)在(1)的条件下,作点C关于直线DH的对称点E,连接AE、BE,求证:CE平分∠AEB;
(3)现将图1中△DCB绕点C顺时针旋转一定角度α(0°<α<90°),如图2,点C关于直线DH的对称点为E,则(2)中的结论是否成立并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.解分式方程:$\frac{x-1}{x+3}+\frac{3}{x-2}=1$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.把$\frac{9}{7}$:$\frac{3}{5}$化成最简单的整数比是15:7.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图1,已知△ABC和△EFC都是等边三角形,点E在线段AB上.
(1)求证:AE=BF,BF∥AC;
(2)若点D在直线AC上,且ED=EC(如图2),求证:AB=AD+BF;
(3)在(2)的条件下,若点E改为在线段AB的延长线上,其它条件不变(如图3),请直接写出AB、AD、BF之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.因式分解
(1)3(y-x)2+2(x-y)
(2)a2-4ab+4b2
(3)1-a4
(4)x2-5x+6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.观察下列方程及解的特征:
(1)x+$\frac{1}{x}$=2的解为x1=x2=1;
(2)x+$\frac{1}{x}$=$\frac{5}{2}$的解为x1=2,x2=$\frac{1}{2}$;
(3)x+$\frac{1}{x}$=$\frac{10}{3}$的解为x1=3,x2=$\frac{1}{3}$;     …
解答下列问题:
(1)请猜想:方程x+$\frac{1}{x}$=$\frac{26}{5}$的解为x1=5,x2=$\frac{1}{5}$;;
(2)请猜想:关于x的方程x+$\frac{1}{x}$═a+$\frac{1}{a}$ 的解为x1=a,x2=$\frac{1}{a}$(a≠0);
(3)下面以解方程x+$\frac{1}{x}$=$\frac{26}{5}$为例,验证(1)中猜想结论的正确性.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图所示,沿AE折叠长方形ABCD使点D恰好落在BC边上的点F处.已知AB=8cm,BC=10cm.
(1)求EC的长;
(2)求DE的长;
(3)求△AFE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.我市对某中学八年级学生进行数学水平质量监测,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀.并绘制成以下两幅统计图(不完整)

请你根据图中所给的信息解答下列问题:
(1)这次测试结果共抽查了120名学生;
(2)请将以上两幅统计图补充完整;
(3)该校有500名八年级学生,若“一般”和“优秀”均被视为达标成绩,请你估计该年级有400人达标.

查看答案和解析>>

同步练习册答案