【题目】如图,正方形ABCD的边长为10,点E、F分别在边BC、CD上,且∠EAF=45°,AH⊥EF于点H,AH=10,连接BD,分别交AE、AH、AF于点P、G、Q.
(1)求△CEF的周长;
(2)若E是BC的中点,求证:CF=2DF;
(3)连接QE,求证:AQ=EQ.
【答案】(1)△ECF的周长为20;(2)证明见解析;(3)证明见解析.
【解析】
(1)想办法证明EB=EH,FD=FH,即可解决问题;
(2)通过计算求出CF、DF即可解决问题;
(3)想办法证明△APB∽△QPE,可得∠AEQ=∠ABP=45°即可解决问题.
(1)在Rt△ABE和Rt△AHE中,
∵∠ABE=∠AHE=90°,AB=AH=10,AE=AE,
∴△ABE≌△AHE,
∴BE=HE,同理,DF=FH,
∴△ECF的周长=CE+CF+EF=CE=CE+BE+CF+FD=CB+CD=20.
(2)∵E是BC中点,
∴BE=EC=EH=5,设DF=FH=x,则CF=10﹣x,
在Rt△ECF中,∵∠C=90°,
∴EF2=EC2+CF2,
∴52+(10﹣x)2=(5+x)2,
解得x=,即DF=,则CF=10﹣=,
∴CF=2DF;
(3)在△BPE和△APQ中,∠EBP=∠QAP=45°,∠BPE=∠APQ,
∴△BPE∽△APQ,
∴=,
即=,
∵∠APB=∠QPE,
∴△APB∽△QPE,
∴∠QEP=∠ABP=45°,
∵∠EAF=45°,
∴∠QEA=∠QAE=45°,
∴AQ=EQ.
科目:初中数学 来源: 题型:
【题目】已知:如图在Rt△ABC中,斜边AB=5厘米,BC=厘米,AC=b厘米,>b,且、b是方程的两根。
⑴ 求和b的值;
⑵ 与开始时完全重合,然后让固定不动,将以1厘米/秒的速度沿所在的直线向左移动。
① 设x秒后与的重叠部分的面积为y平方厘米,
求y与x之间的函数关系式,并写出x的取值范围;
② 几秒后重叠部分的面积等于平方厘米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴交于点,与轴交于点,已知二次函数的图象经过点、和点.
求、两点坐标;
求该二次函数的关系式
若抛物线的对称轴与轴的交点为点,则在抛物线的对称轴上是否存在点,使是以为腰的等腰三角形?如果存在,直接写出点的坐标;如果不存在,请说明理由;
点是线段上的一个动点,过点作轴的垂线与抛物线相交于点,当点运动到什么位置时,四边形的面积最大?求出四边形的最大面积及此时点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,锐角三角形ABC的两条高线BE、CD相交于点O,BE=CD.
(1)求证:BD=CE;
(2)判断点O是否在∠BAC的平分线上,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点H为BD中点,CH的延长线交AB于点F.
(1)求证:CH=EH;
(2)若∠CAB=40°,求∠EHF;
(3)如图②,若△DAE≌△CEH,点Q为CH的中点,连接AQ,求证:AQ∥EH.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OP1A1B1、A1P2A2B2、A2P3A3B3、……、An-1PnAnBn都是正方形,对角线OA1、A1A2、A2A3、……、An-1An都在y轴上(n≥2),点P1(x1,y1),点P2(x2,y2),……,点Pn(xn,yn)在反比例函数y= (x>0)的图象上,已知B1 (-1,1)。
(1)反比例函数解析式为________;
(2)求点P1和点P2的坐标;
(3)点Pn的坐标为(____________)(用含n的式子表示),△PnBnO的面积为__________。(直接填答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ACB中,∠ACB=90°,∠A=60°,CD、CE分别是△ABC的高和中线,下列说法错误的是( )
A.AD =ABB.S△CEB = S△ACE
C.AC、BC的垂直平分线都经过ED.图中只有一个等腰三角形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com