精英家教网 > 初中数学 > 题目详情
如图所示,在Rt△ABC中,AB=BC=4,∠ABC=90°,点P是△ABC的外角∠BCN的角平分线上一个动点,点P′是点P关于直线BC的对称点,连结PP′交BC于点M,BP′交AC于D,连结BP、AP′、CP′.

(1)若四边形BPCP′为菱形,求BM的长;
(2)若△BMP′∽△ABC,求BM的长;
(3)若△ABD为等腰三角形,求△ABD的面积.
解:(1)∵四边形BPCP′为菱形,而菱形的对角线互相垂直平分,
∴点M为BC的中点,∴BM=BC=×4=2。
(2)∵△ABC为等腰直角三角形,若△BMP′∽△ABC,
∴△BMP′必为等腰直角三角形,BM=MP′。
由对称轴可知,MP=MP′,PP′⊥BC,则△BMP为等腰直角三角形,
∴△BPP′为等腰直角三角形,BP′=BP。
∵∠CBP=45°,∠BCP=(180°﹣45°)=67.5°,
∴∠BPC=180°﹣∠CBP﹣∠BCP=180°﹣45°﹣67.5°=67.5°。
∴∠BPC=∠BCP。∴BP=BC=4。∴BP′=4。
在等腰直角三角形BMP′中,斜边BP′=4,∴BM=BP′=
(3)△ABD为等腰三角形,有3种情形:
①若AD=BD,如题图②所示,此时△ABD为等腰直角三角形,斜边AB=4,

②若AD=AB,如答图①所示,
过点D作DE⊥AB于点E,则△ADE为等腰直角三角形,

∴DE=AD=AB=

③若AB=BD,则点D与点C重合,可知此时点P、点P′、点M均与点C重合,
(1)由菱形的性质可知,点M为BC的中点,所以BM可求。
(2)△ABC为等腰直角三角形,若△BMP′∽△ABC,则△BMP′必为等腰直角三角形.证明△BMP′、△BMP、△BPP′均为等腰直角三角形,则BP=BP′;证明△BCP为等腰三角形,BP=BC,从而BP′=BC=4,进而求出BM的长度。
(3)△ABD为等腰三角形,有3种情形,分类讨论计算。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

(2013年四川眉山3分)如图,在函数(x<0)和(x>0)的图象上,分别有A、B两点,若AB∥x轴,交y轴于点C,且OA⊥OB,SAOC=,SBOC=,则线段AB的长度=   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,每个正方形网格的边长为1个单位长度,将△ABC的三边分别扩大一倍得到△(顶点均在格点上),若它们是以点P为位似中心的位似图形,则点P的坐标是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD的边长为3,点E,F分别在边AB、BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程为   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知△ABC∽△DEF,若△ABC与△DEF的相似比为3:4,则△ABC与△DEF的面积之比为【   】
A.4:3B.3:4C.16:9D.9:16

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.

(1)如图①,当时,求的值;
(2)如图②当DE平分∠CDB时,求证:AF=OA;
(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图.在ABCD中,AB=6、AD=9,∠BAD的平分线交BC于点E,DC的延长线于点F, BG⊥AE,垂足为G,若BG=4,则△CEF的面积是
A.2  B. C.3 D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

劳技课上小敏拿出了一个腰长为8厘米,底边为6厘米的等腰三角形,她想用这个等腰三角形加工成一个边长比是1:2的平行四边形,平行四边形的一个内角恰好是这个等腰三角形的底角,平行四边形的其它顶点均在三角形的边上,则这个平行四边形的较短的边长为   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如果两个相似三角形的面积比是1∶2,那么它们的周长比是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案