精英家教网 > 初中数学 > 题目详情

已知:如图,在△ABC中,AB=AC,∠BAC=90°,点D、E、F分别在BC、AB、AC边上,BD=DC,BE=AF,EF交AD于点G.
(1)求证:DE=DF;
(2)求证:△DEG∽△DCF;
(3)如果AB=3BE,BE=2数学公式,求出所有与△BDE相似的三角形的面积.

解:(1)证明:∵在△ABC中,AB=AC,∠BAC=90°,
∴∠B=∠C=45°,
∵BD=DC,
∴AD=BC=CD,且∠BAD=∠BAC=45°,
∴∠BAD=∠C,
∵BE=AF,
∴AE=CF,
∵AD=CD,∠BAD=∠C,AE=CF,
∴△ADE≌△CDF,
∴DE=DF,

(2)∵△ADE≌△CDF,
∴∠EDG=∠CDF,
∵∠ADF+∠CDF=90°,
∴∠ADF+∠EDG=90°,
∴∠DEF=45°,
∴∠DEF=∠C,
∵∠EDG=∠CDF,∠DEF=∠C,
∴△DEG∽△DCF,

(3)作EH⊥BC于H.
∵AB=AC,∠BAC=90°,
∴∠B=45°,
∵BE=2
∴EH=BH=2,
∴S△BDE=6,
∵AB=3BE,
∴AE=4,BD=3BH=6,
∴HD=4,
∴在Rt△DEH中,DE==2
∴DF=DE=2
∴△BDE∽△ADF∽△FDG∽△AEG,
∵S△ADF:S△BDE=DA2:BD2=1,
∴S△ADF=S△BDE=6;
∵S△FDG:S△BDE=DF2:BD2=(22:62=5:9,
∴S△FDG=×6=
∵S△AEG:S△BDE=AE2:BD2=(42:62=8:9,
∴S△AEG=
分析:(1)由题意可知AB=AC,BE=AF,推出AE=FC,AD=CD,∠BAD=∠C=45°,推出△ADE≌△CDF,即可推出结论;
(2)根据△ADE≌△CDF,推出∠EDG=∠CDF,根据∠ADF+∠CDF=90°和∠ADF+∠EDG=90°,推出∠DEF=45°,即可推出△DEG∽△DCF;
(3)作EH⊥BC于H,根据题意可知△BDE∽△ADF∽△FDG∽△AEG,根据直角三角形的函数值推出EH的长度,推出△BDE的面积,可求出AE,AB,BD,CD,AC,AF,AD等相关线段的长度,根据相似三角形的性质中面积之比是相似比的平方,即可推出与△BDE相似的三角形的面积.
点评:本题主要考查相似三角形的判定和性质、解直角三角形、全等三角形的判定和性质、勾股定理,关键在于熟练掌握相关的性质定理、正确地进行计算、正确地作出辅助线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案