分析 先求出y=x2+2x+1和y=2x+2的交点C′的坐标为(1,4),再求出“梦之星”抛物线y=x2+2x+1的顶点A坐标(-1,0),接着利用点C和点C′关于x轴对称得到C(1,-4),则可设顶点式y=a(x-1)2-4,
然后把A点坐标代入求出a的值即可得到原抛物线解析式.
解答 解:∵y=x2+2x+1=(x+1)2,
∴A点坐标为(-1,0),
解方程组$\left\{\begin{array}{l}{y={x}^{2}+2x+1}\\{y=2x+2}\end{array}\right.$得$\left\{\begin{array}{l}{x=-1}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$,
∴点C′的坐标为(1,4),
∵点C和点C′关于x轴对称,
∴C(1,-4),
设原抛物线解析式为y=a(x-1)2-4,
把A(-1,0)代入得4a-4=0,解得a=1,
∴原抛物线解析式为y=(x-1)2-4=x2-2x-3.
故答案为y=x2-2x-3.
点评 本题考查了二次函数与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.△=b2-4ac决定抛物线与x轴的交点个数,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (2a2)3=6a6 | B. | -a2b2•3ab3=-3a2b5 | ||
C. | $\frac{b}{a-b}$+$\frac{a}{b-a}$=-1 | D. | $\frac{{a}^{2}-1}{a}$•$\frac{1}{a+1}$=-1 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{2}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com