【题目】某年级共有300名学生,为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,将他们的成绩进行整理、描述和分析.下面给出了部分信息:
Ⅰ.A课程成绩的频数分布直方图如下(数据分成6组):
Ⅱ.A课程成绩在70≤x<80这一组的是:70, 71, 71,71,76,76,77,78,78, 78.5,78.5,79, 79, 79.5.
Ⅲ.A,B两门课程成绩的中位数、众数、平均数如下表所示:
根据以上信息,回答下列问题:
(1)写出表中m的值,m=________;
(2)在此次测试中,某学生的A课程成绩为78分,B课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”)
(3)假设该年级学生都参加此次测试,估计A课程成绩超过该课程平均分的人数.
【答案】(1)78.5;(2)B;(3)180人
【解析】
(1)先确定A课程的中位数落在70≤x<80这一组,再由此分组具体数据得出第30、31个数据的平均数即可;
(2)根据两个课程的中位数定义解答可得;
(3)用总人数乘以样本中超过75.8分的人数所占比例可得.
(1)∵A课程总人数为2+6+12+14+18+8=60,
∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,
∴中位数在70≤x<80这一组,
∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,
∴A课程的中位数为,即m=78.75;
故答案为:78.75
(2)∵该学生的A课程成绩小于A课程的中位数,而B课程成绩大于B课程的中位数,
∴这名学生成绩排名更靠前的课程是B,
故答案为:B
(3)估计A课程成绩超过75.8分的人数为300×=180人.
科目:初中数学 来源: 题型:
【题目】如图,在⊙O上依次有A、B、C三点,BO的延长线交⊙O于E,,过点C作CD∥AB交BE的延长线于D,AD交⊙O于点F.
(1)求证:四边形ABCD是菱形;
(2)连接OA、OF,若∠AOF=3∠FOE且AF=3,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资. 已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为120元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为(元),年销售量为(万件),年获利为(万元)。(年获利=年销售额—生产成本—投资)
(1)试写出与之间的函数关系式;
(2)请通过计算说明,到第一年年底,当取最大值时,销售单价定为多少?此时公司是盈利了还是亏损了?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=4,BC=3,点D为边AB的中点.点P从点A出发,沿AC方向以每秒1个单位长度的速度向终点C运动,同时点Q从点C出发,以每秒2个单位长度的速度先沿CB方向运动到点B,再沿BA方向向终点A运动,以DP、DQ为邻边构造PEQD,设点P运动的时间为t秒.
(1)设点Q到边AC的距离为h,直接用含t的代数式表示h;
(2)当点E落在AC边上时,求t的值;
(3)当点Q在边AB上时,设PEQD的面积为S(S>0),求S与t之间的函数关系式;
(4)连接CD,直接写出CD将PEQD分成的两部分图形面积相等时t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=x+4的图象与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过点A(2,0)和点C,抛物线与x轴交于点A和点E(点A在点E的左侧),连接AC,将△ABC沿AC折叠,得到点B的对应点为点D.
(1)求二次函数的表达式;
(2)求点D坐标,并判定点D是否在该二次函数的图象上;
(3)①在线段AC上找一点F,使得△OBF的周长最小,直接写出此时点F的坐标.②在①的基础上,过点F的一条直线与抛物线对称轴右侧部分交于点N,交线段AD于点M,连接NA、ND,使△AMF与△AMN的面积比为4:1,请直接写出△AND的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究
如图,抛物线经过点A(-2,0),B(4,0)两点,与轴交于点C,点D是抛物线上一个动点,设点D的横坐标为.连接AC,BC,DB,DC,
(1)求抛物线的函数表达式;
(2)△BCD的面积等于△AOC的面积的时,求的值;
(3)在(2)的条件下,若点M是轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了开展“阳光体育运动”,计划购买篮球和足球.已知购买20个篮球和40个足球的总金额为4600元;购买30个篮球和50个足球的总金额为6100元.
(1)每个篮球、每个足球的价格分别为多少元?
(2)若该校购买篮球和足球共60个,且购买篮球的总金额不超过购买足球的总金额,则该校最多可购买多少个篮球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,,将矩形绕点按顺时针方向旋转角,得到矩形,与交于点,的延长线与交于点.
(1)如图①,当时,连接,求和的长;
(2)如图②,当矩形的顶点落在的延长线上时,求的长;
(3)如图③,当时,连接,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC、BD交于点O,以OB为直径画圆M,过D作⊙M的切线,切点为N,分别交AC、BC于点E、F,已知AE=5,CE=3,则DF的长是( )
A. 3B. 4C. 4.8D. 5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com