【题目】如图1,直线分别交x轴、y轴于A、B两点,点P是线段AB上的一动点,以P为圆心,r为半径画圆.
(1)若点P的横坐标为﹣3,当⊙P与x轴相切时,则半径r为 ,此时⊙P与y轴的位置关系是 .(直接写结果)
(2)若,当⊙P与坐标轴有且只有3个公共点时,求点P的坐标.
(3)如图2,当圆心P与A重合,时,设点C为⊙P上的一个动点,连接OC,将线段OC绕点O顺时针旋转90°,得到线段OD,连接AD,求AD长的最值并直接写出对应的点D的坐标.
【答案】(1),相离,(2)P
或P
;(3)当点D在线段AB上时,AD最小值为
,点D坐标为
,当点D在线段AB的延长线上时,AD最大值为
,点D坐标为
【解析】
(1)根据坐标轴上点的坐标特征求出A点和B点的坐标,根据相似三角形的性质解答;
(2)根据直线与圆的位置关系解答;
(3)连接AC,BD,证明△AOC≌△BOD,求出BD的长,得到AD最长或最短距离,根据直角三角形的性质求出点D的坐标.
(1)当x=0时,y=4, 当y=0时,x=-4,
∴A点的坐标为(-4,0),B点的坐标为(0,4),
点N为⊙P与x轴的切点,连接PN,
则PN∥OB,
∴,即
,
解得,PN=1,
x+4=1,
解得,x=3,
∵3>1,
∴⊙P与y轴的位置关系是相离,
故答案为:1;相离;
(2)当r=,⊙P与x轴相切时,
由=x+4,得x=
,
则⊙P与y轴相交,
此时点P的坐标为(,
),
当r=,⊙P与y轴相切时,
由y=+4=
,
则P与x轴相交,
此时点P的坐标为(-,
);
(3)连接AC、BD,
∵∠COD=∠AOB=90°
∴∠COA=∠DOB
易证△AOC≌△BOD
∴BD=AC=2
∴点D的运动轨迹是以点B为圆心,2为半径的圆,
当点D在线段AB上时,AD最小值为,点D坐标为
;
当点D在线段AB的延长线上时,AD最大值为,点D坐标为
.
科目:初中数学 来源: 题型:
【题目】如图,分别以线段AC的两个端点A,C为圆心,大于AC的长为半径画弧,两弧相交于B,D两点,连接BD,AB,BC,CD,DA,以下结论:
①BD垂直平分AC;
②AC平分∠BAD;
③AC=BD;
④四边形ABCD是中心对称图形.
其中正确的有( )
A. ①②③ B. ①③④ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一组数,按照下列规律排列:
1,
2,3,
6,5,4,
7,8,9,10,
15,14,13,12,11,
16,17,18,19,20,21,
……
数字5在第三行左数第二个,我们用(3,2)点示5的位置,那点这组成数里的数字100的位置可以表示为( )
A. (14,9) B. (14,10) C. (14,11) D. (14,12)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,由12个形状、大小完全相同的小矩形组成一个大的矩形网格,小矩形的顶点称为这个矩形网格的格点,已知这个大矩形网格的宽为4,△ABC的顶点都在格点.
(1)求每个小矩形的长与宽;
(2)在矩形网格中找出所有的格点E,使△ABE为直角三角形;(描出相应的点,并分别用E1 , E2…表示)
(3)求sin∠ACB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校实施课程改革,为初三学生设置了A,B,C,D,E,F共六门不同的拓展性课程,现随机抽取若干学生进行了“我最想选的一门课”调查,并将调查结果绘制成如图统计图表(不完整)
选修课 | A | B | C | D | E | F |
人数 | 20 | 30 |
根据图标提供的信息,下列结论错误的是( )
A.这次被调查的学生人数为200人
B.扇形统计图中E部分扇形的圆心角为72°
C.被调查的学生中最想选F的人数为35人
D.被调查的学生中最想选D的有55人
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的两条高线BD,CE相交于点F,已知∠ABC=60°,AB=10,CF=EF,则△ABC的面积为( )
A.20
B.25
C.30
D.40
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,由12个形状、大小完全相同的小矩形组成一个大的矩形网格,小矩形的顶点称为这个矩形网格的格点,已知这个大矩形网格的宽为4,△ABC的顶点都在格点.
(1)求每个小矩形的长与宽;
(2)在矩形网格中找出所有的格点E,使△ABE为直角三角形;(描出相应的点,并分别用E1 , E2…表示)
(3)求sin∠ACB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,⊙A切y轴于点B,且点A在反比例函数y= (x>0)的图象上,连接OA交⊙A于点C,且点C为OA中点,则图中阴影部分的面积为( )
A.4 ﹣
B.4
C.2
D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com