精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,直线y=-x+6与x轴、y轴分别交于B、C两点.
(1)直接写出B、C两点的坐标;
(2)直线y=x与直线y=-x+6交于点A,动点P从点O沿OA方向以每秒1个单位的速度运动,设运动时间为t秒(即OP=t).过点P作PQ∥x轴交直线BC于点Q.
①若点P在线段OA上运动时(如图1),过P、Q分别作x轴的垂线,垂足分别为N、M,设矩形PQMN的面积为S,写出S和t之间的函数关系式,并求出S的最大值.
②若点P经过点A后继续按原方向、原速度运动,当运动时间t为何值时,过P、Q、O三点的圆与x轴相切?

【答案】分析:(1)令x=0以及y=0代入题中相应的函数关系式可求出B,C的坐标.
(2)已知点P在y=x上,OP=t,可求出点P,Q的坐标以及PQ的长.然后根据矩形公式求出S关于t的函数关系式化简求出S的最大值.
根据题意,点P经过A点后继续按原方向,原速度运动,则圆心在y轴上且y轴垂直平分PQ.得出∠POC=∠QOC=45°.
解答:解:(1)令x=0,则y=6;令y=0,则x=12,
∴B(12,0),C(0,6).

(2)①点P在y=x上,OP=t,点P坐标(t,t),点Q坐标(12-t,t).
PQ=12-t-t=12-t,PN=t.
S=PQ•PN=-1.5t2+6t=-1.5(t2-4t+8)+12=-1.5(t-2+12.
时,S的最大值为12.
②若点P经过点A后继续按原方向、原速度运动,过P、Q、O三点的圆与x轴相切,
则圆心在y轴上,且y轴垂直平分PQ.
∴∠POC=45°,
∴∠QOC=45°.


点评:本题考查的是一次函数的图象与应用,矩形的面积公式以及圆的有关知识,难度中上.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案