精英家教网 > 初中数学 > 题目详情
2、如图,已知BE⊥AC,垂足为E,CF⊥AB,垂足为F,BE与CF相交于点D,且BD=CD.求证:AE=AF.
分析:要证AE=AF,可证△AFC≌△AEB,那么必先证△BDF≌△CDE才可行.
解答:证明:∵BE⊥AC,CF⊥AB,
∴∠CED=∠BFD=90°,∠AFC=∠AEB=90°.
又∵BD=CD,∠BDF=∠CDE,
∴△BDF≌△CDE.
∴DF=DE,BD=CD,∠B=∠C.
∴BE=CF.
又∵∠A=∠A,
则△AFC≌△AEB.
∴AE=AF.
点评:本题重点考查了三角形全等的判定定理.做题时从已知条件开始思考,结合全等的判定方法由易到难,找寻全等的三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若AB=AC.
求证:AD平分∠BAC.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,已知BE⊥AC,CF⊥AB,垂足分别为E,F,BE,CF相交于点D,若BD=CD.求证:AD平分∠BAC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知BE⊥AC,FG⊥AC,垂足分别为E,G,∠1=∠2,你能判定∠ADE与∠ABC的大小关系吗?并请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

证明题:说明理由(7分)如图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若BD=CD.求证:AD平分∠BAC.

  证明:∵BE⊥AC于E,CF⊥AB于F
  ∴∠BFD=∠CED=90°
  又∵∠BDF=∠CDE(    ) BD=CD
  ∴△BDF≌△CDE(    )
  ∴DF=DE(    )
  ∴AD平分∠BAC(    ).

查看答案和解析>>

同步练习册答案