4.【问题思考】有这么一道数学问题:“若x+2y=5,则代数式5-2x-4y的值为-5”
同学A:我可以选择特殊值法求解,如取x=1,那么y=2,
则所求代数式的值为5-2x-4y=5-2×1-4×2=-5,
同学B:我也可以用整体思想进行求解,设a=x+2y=5,
5-2x-4y=5-2(x+2y)=5-2a=5-2×5=-5
[问题解决】运用上述思想方法解决下列问题:
(1)若代数式a
2+2a的值为5,则代数式5-4a-2a
2的值为-5.
(2)若方程组$\left\{\begin{array}{l}{{a}_{1}x+{b}_{1}y={c}_{1}}\\{{a}_{2}x+{b}_{2}y={c}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,则方程组$\left\{\begin{array}{l}{{a}_{1}x+2{b}_{1}y=4{c}_{1}}\\{{a}_{2}x+2{b}_{2}y=4{c}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=4}\\{y=6}\end{array}\right.$
(3)方程组$\left\{\begin{array}{l}{2013(x+2)+2014(y+1)=1}\\{2014(x+2)+2013(y+1)=-1}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=-3}\\{y=0}\end{array}\right.$
(4)已知分式方程x+$\frac{1}{x}$=2+$\frac{1}{2}$的解为x
1=2,x
2=$\frac{1}{2}$,那么方程x+$\frac{1}{x-1}$=a+$\frac{1}{a-1}$的解为x
1=a,x
2=$\frac{a}{a-1}$.
(5)不交于同一点的三条直线两两相交(如图(1))有6对同旁内角;不交于同一点的四条直线两两相交(如图(2)),有24对同旁内角.
【问题迁移】
《怎样解题》的作者波利亚说过:“发现问题、提出问题比分析问题、解决问题更重要,请你提出一个能用整体思想来求解的有关因式分解的问题,并写出解题过程.