精英家教网 > 初中数学 > 题目详情
已知:二次函数y=ax2+bx+c的图象经过点(1,0)、(2,10)、(-2,-6).
(1)求这个抛物线的解析式;
(2)运用配方法,把这个抛物线的解析式化为y=a(x+m)2+k的形式,并指出它的顶点坐标;
(3)把这个抛物线先向右平移4个单位,再向上平移6个单位,求平移后得到的抛物线与y轴交点的坐标.
【答案】分析:(1)将抛物线经过的三点坐标代入解析式,解三元一次方程组求a、b、c的值即可;
(2)根据配方法的要求将抛物线解析式写成顶点式,可确定顶点坐标;
(3)抛物线的平移,实际上是顶点的平移,将顶点平移,求出平移后的抛物线顶点式,再求抛物线与y轴的交点坐标.
解答:解:(1)根据题意得:
解得
∴这个抛物线的解析式是y=2x2+4x-6;

(2)y=2x2+4x-6=2(x2+2x)-6,y=2(x2+2x+1)-2-6,
∴y=2(x+1)2-8
∴顶点坐标是(-1,-8);

(3)将顶点(-1,-8)先向右平移4个单位,再向上平移6个单位,
得顶点坐标为(3,-2),
∴平移后得到的抛物线的解析式是y=2(x-3)2-2,
令x=0,则y=16,
∴它与y轴的交点的坐标是(0,16).
点评:本题考查了待定系数法求抛物线解析式,配方法的运用,二次函数图象的平移与顶点坐标的关系及几何变换.关键是熟练掌握求二次函数解析式的方法,配方法的灵活运用,图形的平移与顶点的平移的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:二次函数的表达式为y=2x2+4x-1.
(1)设这个函数图象的顶点坐标为P,与y轴的交点为A,求P、A两点的坐标;
(2)将二次函数的图象向上平移1个单位,设平移后的图象与x轴的交点为B、C(其中点B在点C的左侧),求B、C两点的坐标及tan∠APB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点A的坐标是(-2,0),点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OC<OB)是方程x2-10x+24=0的两个根.
(1)求B、C两点的坐标;
(2)求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=x2-2(m-1)x-1-m的图象与x轴交于A(x1,0)、B(x2,0),x1<0<x2,与y轴交于点C,且满足
1
AO
-
1
OB
=
2
CO

(1)求这个二次函数的解析式;
(2)是否存在着直线y=kx+b与抛物线交于点P、Q,使y轴平分△CPQ的面积?若存在,求出k、b应满足的条件;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(-3,0),与y轴精英家教网交于点C,点D(-2,-3)在抛物线上.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)点G抛物线上的动点,在x轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:
x 0 1 2 3 4 5
y 3 0 -1 0 m 8
(1)可求得m的值为
3
3

(2)求出这个二次函数的解析式;
(3)当0<x<3时,则y的取值范围为
-1≤y<3
-1≤y<3

查看答案和解析>>

同步练习册答案