精英家教网 > 初中数学 > 题目详情
15、如图,AD是△ABC的外角平分线,∠B=30°,∠DAE=65°,则∠ACD等于
80
度.
分析:利用三角形的内角和定理计算.
解答:解:∵AD是△ABC的外角平分线,∠B=30°,∠DAE=65°
∴∠EAC=2∠DAE=2×65=130°.
∵∠EAC是△ABC的外角,
∴∠ACB=∠EAC-∠B=130°-30°=100°,
∴∠ACD=180°-∠ACB=180°-100°=80°.
故填80度.
点评:在三角形中求角的度数常常要用到“三角形的内角和是180°这一隐含的条件;
三角形的外角通常情况下是转化为内角来解决.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,AD是△ABC的高线,且AD=2,若将△ABC及其高线平移到△A′B′C′的位置,则A′D′和B′D′位置关系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC是角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AD是△ABC的角平分线,且 AB:AC=3:2,则△ABD与△ACD的面积之比为
3:2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm.
(1)求△ABD与△ACD的周长之差.
(2)若AB边上的高为2cm,求AC边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为(  )

查看答案和解析>>

同步练习册答案