精英家教网 > 初中数学 > 题目详情

如图1,在直角坐标系中放入一个边长AB长为6,BC长为10的矩形纸片ABCD,B点与坐标原点O重合.将纸片沿着折痕AE翻折后,点D恰好落在x轴上,记为F.
(1)求折痕AE所在直线与x轴交点的坐标;
(2)求过D,F的直线解析式;
(3)将矩形ABCD水平向右移动m个单位,则点B坐标为(m,0),其中m>0.如图2所示,连接OA,若△OAF是等腰三角形,求m的值.

解:(1)∵四边形ABCD是矩形,
∴AD=CB=10,AB=DC=6,∠D=∠DCB=∠ABC=90°,
由折叠对称性:AF=AD=10,EF=DE,
在Rt△ABF中,BF===8,
∴CF=2,
设EC=x,则EF=6-x,
在Rt△ECF中,22+x2=(6-x)2
解得:x=
∴E点坐标为:(10,),
∴设AE所在直线解析式为:y=ax+b,

解得:
∴AE所在直线解析式为:y=-x+6,
当y=0时,x=18,
故折痕AE所在直线与x轴交点的坐标为:(18,0);

(2)设D,F所在直线解析式为:y=kx+c,
∵BF=8,∴F点坐标为:(8,0),
将D,F点坐标代入解析式得:

解得:
∴过D,F的直线解析式为:y=3x-24;

(3)分三种情况讨论:
若AO=AF,
∵AB⊥OF,
∴BO=BF=8,
∴m=8,
若OF=FA,则m+8=10,
解得:m=2,
若AO=OF,在Rt△AOB中,
AO2=OB2+AB2=m2+36,
∴(m+8)2=m2+36,
解得:m=-(m<0不合题意舍去),
综上所述,若△OAF是等腰三角形,m的值为m=8或2.
分析:(1)根据四边形ABCD是矩形以及由折叠对称性得出AF=AD=10,EF=DE,进而求出BF的长,即可得出E点的坐标,进而得出AE所在直线与x轴交点的坐标;
(2)由(1)中所求可得出F点坐标,进而得出过D,F的直线解析式;
(3)分三种情况讨论:若AO=AF,OF=FA,AO=OF,利用勾股定理求出即可.
点评:此题主要考查了一次函数的综合应用以及翻折变换的性质和勾股定理等知识,一次函数的综合应用是初中阶段的重点题型特别注意利用数形结合以及分类讨论思想是这部分考查的重点也是难点同学们应重点掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在直角坐标系中,反比例函数y=
kx
(k>0)
的图象与矩形AOBC的边AC、BC分别相交于点E、F,且点C坐标为(4,3),将△CEF沿EF对折后,C点恰好落在OB上.
(1)求k的值;
(2)如图2,在直角坐标系中,P点坐标为(2,-3),请在双曲线上找两点M、N,使四边形OPMN是平行四边形,求M、N的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•达州)如图1,在直角坐标系中,已知点A(0,2)、点B(-2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE.
(1)填空:点D的坐标为
(-1,3)
(-1,3)
,点E的坐标为
(-3,2)
(-3,2)

(2)若抛物线y=ax2+bx+c(a≠0)经过A、D、E三点,求该抛物线的解析式.
(3)若正方形和抛物线均以每秒
5
个单位长度的速度沿射线BC同时向上平移,直至正方形的顶点E落在y轴上时,正方形和抛物线均停止运动.
①在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,并写出相应自变量t的取值范围.
②运动停止时,求抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在Rt△OAB中,∠B=90°,AO=
12
,BA=2.把△OAB按如图方式放置在直角坐标系中,使点O与原点重合,点A落在x轴正半轴上.求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在直角坐标系中,A点的坐标为(a,0),B点的坐标为(0,b),且a、b满足
a-b
+
a2-144
a+12
=0

(1)求证:∠OAB=∠OBA.
(2)如图2,△OAB沿直线AB翻折得到△ABM,将OA绕点A旋转到AF处,连接OF,作AN平分∠MAF交OF于N点,连接BN,求∠ANB的度数.
(3)如图3,若D(0,4),EB⊥OB于B,且满足∠EAD=45°,试求线段EB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC在直角坐标系中,
(1)若把△ABC向上平移2个单位,再向左平移1个单位得到△A1B1C1,写出A1、B1、C1的坐标
(2)求出三角形ABC的面积.

查看答案和解析>>

同步练习册答案