精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD和MNPQ都是边长为a的正方形,点A是MNPQ的中心(即两条对角线MP和NQ的交点),点E是AB与MN的交点,点F是NP与AD的交点,则四边形AENF的面积是(  )
A.
a2
4
B.
a2
3
C.
2a2
5
D.
2a2
3

连接AP,AN,点A是正方形的对角线的交点,
则AP=AN,∠APF=∠ANE=45°,
∵∠PAF+∠FAN=∠FAN+∠NAE=90°,
∴∠PAF=∠NAE,
∴△PAF≌△NAE,
∴四边形AENF的面积等于△NAP的面积,而△NAP的面积是正方形的面积的
1
4
,正方形的面积为a2
∴四边形AENF的面积为
a2
4

故选A
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC,PF⊥CD,垂足分别为点E,F,连接AP,EF,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③PD=
2
EC;④△APD一定是等腰三角形.其中正确的结论有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,直线a经过正方形ABCD的顶点A,分别过顶点B、D作BE⊥a于点E、DF⊥a于点F,若BE=4,DF=3,求EF的长及正方形的面积.(注:正方形的四边都相等,四个角都是直角)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知四边形ABCD是正方形,M、N分别是边BC、CD上的动点,正方形ABCD的边长为4cm.

(1)如图①,O是正方形ABCD对角线的交点,若OM⊥ON,求四边形MONC的面积;
(2)如图②,若∠MAN=45°,求△MCN的周长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,四边形ABCD是正方形,AE⊥BE于点E,且AE=3,BE=4,则阴影部分的面积是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示的方格纸中,每个方格都是边长为1的正方形,点A是方格纸中的一个格点(小正方形的顶点).在这个5×5的方格纸中,以A为其中一个顶点,面积等于
5
2
的格点等腰直角三角形(三角形的三个顶点都是格点)的个数为(  )
A.10个B.12个C.14个D.16个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD边AB,CD,DA上,AH=2,连接CF.过点F作FM垂直于DC,交直线DC于M.
(1)如果DG=2,那么FM=______(画出对应图形会变得更简单!)
(2)当E,G在正方形边上移动时,猜测FM的值是否发生改变,并证明你的结论.
(3)设DG=x,用含x的代数式表示△FCG的面积S;判断S能否等于1,若能求x的值,若不能请说明理由.
(温馨提示:不要忘记顶点E,G,H分别在正方形ABCD边AB,CD,DA上哦!)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知正方形ABCD中,对角线AC、BD交于O点,过O点作OE⊥OF分别交DC于E,交BC于F,∠FEC的角平分线EP交直线AC于P.
(1)①求证:OE=OF;
②写出线段EF、PC、BC之间的一个等量关系式,并证明你的结论;
(2)如图2,当∠EOF绕O点逆时针旋转一个角度,使E、F分别在CD、BC的延长线上,请完成图形并判断(1)中的结论①、②是否分别成立?若不成立,写出相应的结论(所写结论均不必证明).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,把边长为1的正方形ABCD的对角线AC分成n段,以每一段为对角线作小正方形,所有小正方形的周长之和为______.

查看答案和解析>>

同步练习册答案