精英家教网 > 初中数学 > 题目详情
2.已知一次函数y=mx+1-m,若y随x的增大而减小,且该函数的图象与x轴的交点在原点的右侧,则m的取值范围是m<0.

分析 根据一次函数图象的性质列出关于m的不等式m<0,且1-m>0,然后解不等式即可.

解答 解:∵一次函数y=mx+1-m,若y随x的增大而减小,且该函数的图象与x轴交点在原点右侧,
∴m<0,且1-m>0,
解得,m<0且m<1,
∴m<0,
故答案为:m<0.

点评 本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题的关键是注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,在平面直角坐标系中,A、B两点的坐标分别为(-2,2)、(1,8)
(1)求三角形ABO的面积;
(2)若y轴上有一点M,且三角形MAB的面积为10,求M点的坐标;
(3)如图,把直线AB以每秒2个单位的速度向右平移,问经过多少秒后,该直线与y轴交于点(0,-2)?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.已知点(3,y1),(2,y2)都在直线y=-3x+2上,则y1 y2大小关系是(  )
A.y1>y2B.y1=y2C.y1<y2D.不能比较

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知直线y=kx+b经过点(-2,4)和(3,-1),试确定该一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知矩形ABCD的长AB=2,AB边与x轴重合,双曲线y=$\frac{k}{x}$在第一象限内经过D点以及BC的中点E.
(1)求A点的横坐标;
(2)连接ED,若四边形ABED的面积为6,求双曲线的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知一次函数y=(3-k)x-2k2+18
(1)当k为何值时.其图象经过原点?
(2)当k取何值时,y的值随x的增大而减小?
(3)当k的取值范围为多少时,其图象与y轴的交点在x轴上方.
(4)当k取何值时.其图象与直线y=-x+5平行.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧$\widehat{{P_1}{P_2}}$,$\widehat{{P_2}{P_3}}$,$\widehat{{P_3}{P_4}}$,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(-1,0),P3(0,-1),则该折线上的点P9的坐标为(  )
A.(-6,24)B.(-6,25)C.(-5,24)D.(-5,25)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图所示,已知四边形OABC是菱形,OC在x轴上,B(18,6),反比例函数y=$\frac{k}{x}$(k≠0)的图象经过点A,与OB交于点E.
(1)求出k;
(2)求OE:EB.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列四个选项中,错误的是(  )
A.sinα=cosαB.tanC=2C.sinβ=cosβD.tanα=1

查看答案和解析>>

同步练习册答案