分析 (1)由DE∥AC交AB于E,DF∥AB交AC于F,可证得四边形AEDF是平行四边形,即可证得结论;
(2)由AD平分∠BAC,DE∥AC,易证得△ADE是等腰三角形,又由四边形AEDF是平行四边形,即可证得四边形AEDF是菱形;
(3)当AC⊥AB时,由四边形AEDF是菱形,即可证得四边形AEDF是正方形.
解答 (1)证明:∵DE∥AC,DF∥AB,
∴四边形AEDF是平行四边形,
∴DE=AF;
(2)若AD平分∠BAC,则四边形AEDF是菱形;
理由:∵AD平分∠BAC,
∴∠EAD=∠FAD,
∵DE∥AC,
∴∠ADE=∠FAD,
∴∠EAD=∠ADE,
∴AE=DE,
∵四边形AEDF是平行四边形,
∴四边形AEDF是菱形;
(3)在(2)的条件下,当AB⊥AC时,四边形AEDF是正方形.
理由:∵AB⊥AC,
∴∠BAC=90°,
∵四边形AEDF是菱形,
∴四边形AEDF是正方形.
点评 此题考查了平行四边形的判定与性质,菱形的判定与性质以及正方形的判定.注意熟练掌握菱形与正方形的判定是解此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com