精英家教网 > 初中数学 > 题目详情
如图,AB为等腰直角△ABC的斜边(AB为定长线段),O为AB的中点,P为AC延长线上的一个动点,线段PB的垂直平分线交线段OC于点E,D为垂足,当P点运动时,给出下列四个结论:
①E为△ABP的外心;②△PBE为等腰直角三角形;
③PC•OA=OE•PB;④CE+PC的值不变.

A.1个
B.2个
C.3个
D.4个
【答案】分析:①由于外心是三角形三边中垂线的交点,显然点E是AB、BP两边中垂线的交点,因此符合△ABP外心的要求,故①正确;
②此题要通过①的结论来求,连接AE,根据三角形的外心的性质可知:AE=PE=BE,即∠EPA=∠EAP,∠EAB=∠EBA,再结合三角形的内角和定理进行求解即可;
③此题显然要通过相似三角形来求解,由于OA=OB,那么可通过证△OEB∽△CPB来判断③的结论是否正确;
④此题较简单,过E作EM⊥OC,交AC于M,那么MC=CE,因此所求的结论可转化为证PM是否为定值,观察图形,可通过证△PEM、△BEC是否全等来判断.
解答:解:①∵CO为等腰Rt△ABC斜边AB上的中线,
∴CO垂直平分AB;
又∵DE平分PB,即E点是AB、BP两边中垂线的交点,
∴E点是△ABP的外心,故①正确;
②如图,连接AE;
由①知:AE=EP=EB,则∠EAP=∠EPA,∠EPB=∠EBP,∠EAB=∠EBA;
∵∠PAB=45°,即∠EAP+∠EPA+∠EAB+∠EBA=2(∠EAP+∠EAB)=2∠PAB=90°,
由三角形内角和定理知:∠EPB+∠EBP=90°,即∠EPB=∠EBP=45°,
∴△PEB是等腰直角三角形;故②正确;
③∵∠PBE=∠ABC=45°,
∴∠EBO=∠PBC=45°-∠CBE,
又∵∠EOB=∠PCB=90°,
∴△BPC∽△BEO,得:,即PC•OB=OE•BC?PC•OA=OE•BC;
故③错误;
④过E作EM⊥OC,交AC于M;
易知:△EMC是等腰直角三角形,即MC=EC,∠PME=45°;
∴∠PEM=∠BEC=90°+∠PEC,
又∵EC=ME,PE=BE,
∴△PME≌△BCE(SAS),得PM=BC,即PM是定值;
由于PM=CM+PC=EC+PC,所以CE+PC的值不变,故④正确;
因此正确的结论是①②④,故选C.
点评:此题主要考查了三角形的外接圆、等腰直角三角形的性质、全等三角形及相似三角形的相关知识等,综合性强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AB为等腰直角△ABC的斜边(AB为定长线段),O为AB的中点,P为AC延长线上的一个动点,线段PB的垂直平分线交线段OC于点E,D为垂足,当P点运动时,给出下列四个结论:
①E为△ABP的外心;②△PBE为等腰直角三角形;
③PC•OA=OE•PB;④
2
CE+PC的值不变.
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB为等腰直角△ABC的斜边(AB为定长线段),O为AB的中点,P为AC延长线上的一个动点,线段PB的垂直平分线交线段OC于点E,D为垂足,当P点运动时,给出下列四个结论,其中正确的个数是(  )
①E为△ABP的外心;②∠PEB=90°;③PC•BE=OE•PB;④
2
CE+PC=
2
2
AB

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江省义乌市初中毕业生学业模拟考试数学试卷(解析版) 题型:选择题

如图,AB为等腰直角△ABC的斜边(AB为定长线段),O为AB的中点,P为AC延长线上的一

个动点,线段PB的垂直平分线交线段OC于点E,D为垂足,当P点运动时,给出下列四个结论:

①E为△ABP的外心;   ②△PBE为等腰直角三角形;

③PC·OA = OE·PB;    ④CE + PC的值不变.

A.1个       B.2个    C.3个         D.4个

 

查看答案和解析>>

科目:初中数学 来源:2010年湖北省武汉市中考数学模拟试卷(23)(解析版) 题型:选择题

如图,AB为等腰直角△ABC的斜边(AB为定长线段),O为AB的中点,P为AC延长线上的一个动点,线段PB的垂直平分线交线段OC于点E,D为垂足,当P点运动时,给出下列四个结论:
①E为△ABP的外心;②△PBE为等腰直角三角形;
③PC•OA=OE•PB;④CE+PC的值不变.

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案