【题目】如图,等腰中,
,
,
是
边上一点且
,
是
边上的中点,连接
,
.
(1)求的度数;
(2)若上存在点
,且
,求证:
.
【答案】(1)20°;(2)见详解
【解析】
(1)根据等腰三角形的性质可求∠C,再根据等腰三角形的性质可求∠CAE,根据等腰三角形三线合一的性质和三角形内角和定理可求∠CAD,再根据角的和差关系可求∠DAE的度数;
(2)等腰三角形三线合一的性质可得BD=CD,FD=ED,再根据线段的和差关系即可求解.
解:(1)∵AB=AC,∠ABC=35°,
∴∠C=35°,
∵AE=CE,
∴∠CAE=35°,
∵D是BC边上的中点,
∴AD⊥BC,
∴∠ADC=90°,
∴∠DAC=180°-90°-35°=55°,
∴∠DAE=∠DAC-∠C=55°-35°=20°;
(2)证明:∵D是BC边上的中点,
∴BD=CD,
∵∠AFE=∠AEF,
∴AF=AE,
∵AD⊥BC,
∴D是EF边上的中点,
∴FD=ED,
∴BD-FD=CD-ED,即BF=CE.
科目:初中数学 来源: 题型:
【题目】如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).
(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;
(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠CAB=30°.以AB长为一边作△ABD,且AD=BD,∠ADB=90°,取AB中点E,连DE、CE、CD.则∠EDC= °.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角三角形纸片ABC中,∠ACB=90°,AC=2,BC=4,点D在边AB上,以CD为折痕将△CBD折叠得到△CPD,CP与边AB交于点E,若△DEP为直角三角形,则BD的长是_____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.
(1)求A、B型号衣服进价各是多少元?
(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙二人同时从A地出发,沿同一条道路去B地,途中都使用两种不同的速度Vl与V2(Vl<V2),甲用一半的路程使用速度Vl、另一半的路程使用速度V2;乙用一半的时间使用速度Vl、另一半的时间使用速度V2;关于甲乙二人从A地到达B地的路程与时间的函数图象及关系,有图中4个不同的图示分析.其中横轴t表示时间,纵轴s表示路程,其中正确的图示分析为( )
A. 图(1) B. 图(1)或图(2) C. 图(3) D. 图(4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.
(1)求共抽取了多少名学生的征文;
(2)将上面的条形统计图补充完整;
(3)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少;
(4)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列几个命题中正确的个数为 个.
①“掷一枚均匀骰子,朝上点数为负”为必然事件(骰子上各面点数依次为1,2,3,4,5,6).
②5名同学的语文成绩为90,92,92,98,103,则他们平均分为95,众数为92.
③射击运动员甲、乙分别射击10次,算得甲击中环数的方差为4,乙击中环数的方差为16,则这一过程中乙较甲更稳定.
④某部门15名员工个人年创利润统计表如下,其中有一栏被污渍弄脏看不清楚数据,所以对于“该部门员工个人年创利润的中位数为5万元”的说法无法判断对错.
个人年创利润/万元 | 10 | 8 | 5 | 3 |
员工人数 | 1 | 3 | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,有一组平行线,正方形
的四个顶点分别在
上,
过点D且垂直于
于点E,分别交
于点F,G,
.
(1)AE=____,正方形ABCD的边长=____;
(2)如图2,将绕点A顺时针旋转得到
,旋转角为
,点
在直线
上,以
为边在的
左侧作菱形
,使点
分别在直线
上.
①写出与
的函数关系并给出证明;
②若=30°,求菱形
的边长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com