精英家教网 > 初中数学 > 题目详情
19、阅读下面的材料,回答问题:
解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0  ①,解得y1=1,y2=4.
当y=1时,x2=1,∴x=±1;
当y=4时,x2=4,∴x=±2;
∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.
(1)在由原方程得到方程①的过程中,利用
换元
法达到
降次
的目的,体现了数学的转化思想.
(2)解方程(x2+x)2-4(x2+x)-12=0.
分析:(1)本题主要是利用换元法降次来达到把一元四次方程转化为一元二次方程,来求解,然后再解这个一元二次方程.
(2)利用题中给出的方法先把x2+x当成一个整体y来计算,求出y的值,再解一元二次方程.
解答:解:(1)换元,降次

(2)设x2+x=y,原方程可化为y2-4y-12=0,
解得y1=6,y2=-2.
由x2+x=6,得x1=-3,x2=2.
由x2+x=-2,得方程x2+x+2=0,
b2-4ac=1-4×2=-7<0,此时方程无解.
所以原方程的解为x1=-3,x2=2.
点评:本题应用了换元法,把关于x的方程转化为关于y的方程,这样书写简便且形象直观,并且把方程化繁为简化难为易,解起来更方便.
练习册系列答案
相关习题

科目:初中数学 来源:2011--2012学年安徽省定远中学八年级下学期期中数学试卷(带解析) 题型:解答题

阅读下面的材料,回答问题:
解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.
当y=1时,x2=1,∴x=±1;
当y=4时,x2=4,∴x=±2;
∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.
(1)在由原方程得到方程①的过程中,利用___________法达到________的目的,体现了
数学的转化思想.
(2)解方程(x2+x)2-4(x2+x)-12=0.

查看答案和解析>>

科目:初中数学 来源:2011--2012学年安徽省八年级下学期期中数学试卷(解析版) 题型:解答题

阅读下面的材料,回答问题:

解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:

设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0  ①,解得y1=1,y2=4.

当y=1时,x2=1,∴x=±1;

当y=4时,x2=4,∴x=±2;

∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.

(1)在由原方程得到方程①的过程中,利用___________法达到________的目的,体现了

数学的转化思想.

(2)解方程(x2+x)2-4(x2+x)-12=0.

 

查看答案和解析>>

科目:初中数学 来源:2010-2011学年湖南省岳阳市十四中(长炼中学)九年级(上)期中数学试卷(解析版) 题型:解答题

阅读下面的材料,回答问题:
解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0  ①,解得y1=1,y2=4.
当y=1时,x2=1,∴x=±1;
当y=4时,x2=4,∴x=±2;
∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.
(1)在由原方程得到方程①的过程中,利用______法达到______的目的,体现了数学的转化思想.
(2)解方程(x2+x)2-4(x2+x)-12=0.

查看答案和解析>>

科目:初中数学 来源:《第22章 一元二次方程》2009年全章测验题(解析版) 题型:解答题

阅读下面的材料,回答问题:
解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0  ①,解得y1=1,y2=4.
当y=1时,x2=1,∴x=±1;
当y=4时,x2=4,∴x=±2;
∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.
(1)在由原方程得到方程①的过程中,利用______法达到______的目的,体现了数学的转化思想.
(2)解方程(x2+x)2-4(x2+x)-12=0.

查看答案和解析>>

同步练习册答案