精英家教网 > 初中数学 > 题目详情
如图,已知C是以AB为直径的半圆上的一点,AB=10,CD⊥AB于D点,以AD、DB为直径画两个半圆,EF是这两个半圆的外公切线,E、F为切点.
(1)求证:CD=EF;
(2)求证:四边形EDFC是矩形;
(3)若DB=|m|,则m是使关于x的方程x2+2(m-1)x+m2+3=0的两个实根的平方和为22的实数值,求矩形EDFC的面积.
(1)证明:取AD的中点O1,BD的中点O2,连接O1E,O2F,并过O2作O2H⊥O1E,交O1E于H.
∵EF是两圆的公切线,
∴O1E⊥EF,O2F⊥EF,
又∵O2H⊥O1E,
∴四边形EHO2F是矩形
∴EF=O2H
在Rt△O1O2H中,O2H2=(
1
2
AD+
1
2
BD)2-(
1
2
AD-
1
2
BD)2=AD•BD
∵CD⊥AB
∴CD2=AD•BD
∴CD=O2H=EF.

(2)证明:先设CD和EF交于点G,
∵EF,CD都是两圆的切线,
∴GD=GE=GF.
∴△EDF是直角三角形.
∴∠EDF=90°.
又∵DE=ED,∠FED=∠CDE,CD=FE,
∴△EDF≌△DEC.
∴∠DEC=90°.
同理∠DFC=90°.
∴四边形EDFC是矩形.

(3)设x1,x2是方程的两个实数根,
根据题意得,
x1+x2=-2(m-1)
x1x2=m2+3

还能得到,x12+x22=22,三个式子联合,
解得,m1=-2,m2=6
根据图形可知,0<DB<5
DB=|-2|=2,
AD=8.
∵四边形EDFC是矩形,
∴C、F、B在同一直线上,同样C、E、A也在同一直线上.
∴DFAC.
CF
BC
=
AD
AB

由(1)知,CD2=AD•BD=16,
∴CD=4.
在Rt△CDB中,BC=
BD2+CD2
=2
5

∴DE=
8
10
×BC=
8
5
5

同理可得,DF=
4
5
5

∴S矩形EDFC=CF•DF=
8
5
5
×
4
5
5
=
32
5

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

两圆的半径分别为R和r,圆心距为1,且R、r分别是方程x2-9x+20=0的两个根,则两圆的位置关系是(  )
A.相交B.外切C.内切D.外离

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

边长为1的正三角形ABC的中心O,以O为圆心,在正三角形内画一个圆,(⊙O),再作⊙O1,⊙O2,⊙O3,分别与正三角形的两边及⊙O都相切,试求,这四个面积总和的最大值与最小值,并指出面积总和取最值时对应的⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列图形给我们很多圆的形象,其中两圆没有的位置关系是(  )
A.外离B.内含C.相交D.相切

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知扇形AOB,OA⊥OB,C为OB上一点,以OA为直线的半圆O1与以BC为直径的半圆O2相切于点D.
(1)若⊙O1的半径为R,⊙O2的半径为r,求R与r的比;
(2)若扇形的半径为12,求图中阴影部分面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,以正六边形的顶点为圆心,2cm为半径的六个圆中,相邻两圆外切,在正六边形内部的阴影部分能画出最大圆的半径等于(  )
A.2cmB.3cmC.4cmD.2cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O1与⊙O2相交,P是⊙O1上的一点,过P点作⊙O1或⊙O2的切线,则切线的条数可能是(  )
A.1,2B.1,3C.1,2,3D.1,2,3,4

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知⊙O1和⊙O2的半径分别是8.5cm和3.5cm,当两圆外切时圆心距为d1,两圆内切时圆心距为d2,如图,以d1和d2长为邻边作矩形ABCD,依次连接矩形ABCD四边中点,得四边形EFGH,则四边形EFGH周长是______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在⊙O的内接△ABC中,AB=AC,D是⊙O上一点,AD的延长线交BC的延长线于点P.
(1)求证:AB2=AD•AP;
(2)若⊙O的直径为25,AB=20,AD=15,求PC和DC的长.

查看答案和解析>>

同步练习册答案