精英家教网 > 初中数学 > 题目详情
3.已知:矩形ABCD中,AD=2AB,点E、F分别在线段AD、CD上,满足:∠EBF=45°,点P为BF中点,连接EP.

(1)如图1,求证:∠EPB+∠BFD=180°;
(2)如图2,延长EP交BC于点M,把线段BM沿着直线EM折叠,交BF于点N,当EP=2PM时,请你探究线段PN和线段NF的数量关系,并证明你的结论.

分析 如图,过点P作CD的平行线交BC于G,交AD于K,截取GH=AE,BM沿ME翻折至MR,过R作RQ⊥BC于Q,连结BR,BH,
(1)由题意得到PG垂直于BG,再由PG与FC平行,且P为BF中点,得到G为BC中点,得BC=2BG,由BC=2AB,得到AB=BG,利用SAS得到三角形ABE与三角形BGH全等,利用全等三角形对应角相等,对应边相等得到EB=BH,且∠ABE=∠HBG,利用等式的性质得到一对角相等,利用SAS得到三角形EBP与三角形HBP全等,利用全等三角形对应边、对应角相等得到∠BPE=∠BPH,EP=HP,由PG与DC平行,得到一对同位角相等,利用邻补角互补等量代换即可得证;
(2)以BC为x轴,AB为x轴,建立坐标系,如图所示,设BC=8a,AE=x,那么AK=AB=BG=KG=4a,EK=4a-x,继而表示出EK,KP,EP,在直角三角形EPK中,利用勾股定理表示出x,进而表示出EK,PK,根据∠RBM=∠EPK,得到tan∠RBM=tan∠EPK,求出RQ与BQ之比,进而设出RQ,BQ,在直角三角形RMQ中,利用勾股定理列出关系式,表示出RQ,BQ,进而表示出B,P,M,R坐标,利用待定系数法求出BF与RM解析式,联立表示出N坐标,求出PN与NF之比即可.

解答 解:如图,过点P作CD的平行线交BC于G,交AD于K,截取GH=AE,BM沿ME翻折至MR,过R作RQ⊥BC于Q,连结BR,BH,

(1)∵KH∥AB,∠ABG=90°.
∴∠BGK=90°,即PG⊥BG,
∵BP=FP,PG∥FC,
∴BG=CG,即BC=2BG,
∵BC=2AB,
∴AB=BG,
在△BAE和△BGH中,
$\left\{\begin{array}{l}{BA=BG}\\{∠BAE=∠BGH}\\{AE=GH}\end{array}\right.$,
∴△BAE≌△BGH(SAS),
∴∠ABE=∠GBH,BE=BH,
∵∠ABG=90°,∠EBP=45°,
∴∠EBP=∠HBP=45°,
在△BEP和△BHP中,
$\left\{\begin{array}{l}{BE=BH}\\{∠EBP=∠HBP}\\{BP=BP}\end{array}\right.$,
∴△BEP≌△BHP(SAS),
∴∠BPE=∠BPH,EP=HP,
∵PG∥DC,
∴∠BPH=∠BFC,
∵∠BFC+∠BFD=180°,
∴∠BPE+∠DFP=180°;
(2)以BC为x轴,AB为x轴,建立坐标系,如图所示,
设BC=8a,AE=x,那么AK=AB=BG=KG=4a,EK=4a-x,
∵EP=2PM,EK∥GM,
∴KP=2PG=$\frac{8}{3}$a,PG=$\frac{4}{3}$a,EP=HP=PG+GH=AE+PG=x+$\frac{4}{3}$a,
∵在Rt△PEK中,根据勾股定理得:EK2+KP2=EP2
∴(4a-x)2+($\frac{8}{3}$a)2=(x+$\frac{4}{3}$a)2
∴x=2a,
∴EK=2a,GM=$\frac{1}{2}$EK=a,
∵∠RBM=∠EPK,
∴tan∠RBM=tan∠EPK,即$\frac{RQ}{BQ}$=$\frac{EK}{PK}$=$\frac{2a}{\frac{8}{3}a}$=$\frac{3}{4}$,
设RQ=3y,BQ=4y,BM=RM=BG+GM=4a+a=5a,
∴在Rt△RMQ中,根据勾股定理得:MQ2+RQ2=MR2,即(4y-5a)2+(3y)2=(5a)2
∴y=$\frac{8}{5}$a,
∴BQ=$\frac{32}{5}$a,RQ=$\frac{24}{5}$a,
∴B(0,0),P(4a,$\frac{4}{3}$a),M(5a,0),R($\frac{32}{5}$a,$\frac{24}{5}$a),
可得直线BF解析式为:y=$\frac{1}{3}$x;直线MR解析式为:y=$\frac{24}{7}$x-$\frac{120}{7}$a,
令$\frac{1}{3}$x=$\frac{24}{7}$x-$\frac{120}{7}$,
解:x=$\frac{72}{13}$a,y=$\frac{24}{13}$a,
∴N($\frac{72}{13}$a,$\frac{24}{13}$a),
∴$\frac{PN}{NF}$=$\frac{\frac{72}{13}a-4a}{8a-\frac{72}{13}a}$=$\frac{5}{8}$.

点评 此题属于四边形综合题,涉及的知识有:全等三角形的判定与性质,锐角三角函数定义,待定系数法确定函数解析式,勾股定理,坐标与图形性质,折叠的性质,矩形的性质,熟练掌握性质与定理是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,$\sqrt{3}$≈1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.(1)先化简,再求值:3x2-(2x2-xy+y2)+(-x2+3xy+2y2),其中x=-2,y=3.
(2)一个角比它的余角大20°,求这个角的补角度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知抛物线y=-$\frac{1}{2}$x2+bx+c与坐标轴分别交于点点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动.
(1)求该抛物线的解析式及点E的坐标;
(2)若D点运动的时间为t,△CED的面积为S,求S关于t的函数关系式,并求出△CED的面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图1,是抛物线y=ax2+bx+c(a≠0)图象的一部分,已知抛物线的对称轴为直线x=2,与x轴的一个交点是(-1,0);
(1)补充完下列结论:abc>0;4a-2b+c>0;b2-4ac>0
(2)如图2,当a=1时,一次函数y=2x-5与y=x2+bx+c交于A、C两点,求不等式
2x-5>x2+bx+c的解集.
(3)抛物线的对称轴上是否存在点P,使得PB+PC的值最小?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,在四边形ABCD中,BC∥AD,∠A=90°,BC<AD,E为AD的中点,F为CD的中点,P是一动点,从点A开始沿AB-BC匀速运动,到达点C即止,记点P运动的时间为x,四边形PEFC的面积为y,y与x关系所反映的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,点C在线段BE上,在BE的同侧作△ABC和△DCE,AE,BD交于点P,已知AC=BC,DC=EC,∠1=∠2.
(1)求证:∠CAE=∠CBD;
(2)若∠1=45°,求∠APD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,边长为$\sqrt{3}$的等边△ABC中,D、E分别为AB、BC上的点,且DB=$\sqrt{2}$,将线段ED绕E点顺时针旋转60°得到线段EF,连CF.当∠FCB=30°时,CE的长为$\frac{1}{2}$($\sqrt{3}$+$\sqrt{2}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.请你观察:$\frac{1}{1×2}$=$\frac{1}{1}$-$\frac{1}{2}$;$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$;$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$;…
$\frac{1}{1×2}$+$\frac{1}{2×3}$=$\frac{1}{1}$-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$=1-$\frac{1}{3}$=$\frac{2}{3}$;
$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=$\frac{1}{1}$-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$=1-$\frac{1}{4}$=$\frac{3}{4}$;…
从上述运算得到启发,请你填空:
$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$=$\frac{4}{5}$;
$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$+…+$\frac{1}{2015×2016}$=$\frac{2015}{2016}$.
理解以上方法的真正含义,计算:
$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{97×99}$.

查看答案和解析>>

同步练习册答案