精英家教网 > 初中数学 > 题目详情
如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).
(1)画出△OAB关于点O成中心对称的△OA1B1,并写出点B1的坐标;
(2)求出以点B1为顶点,并经过点B的二次函数关系式.
(1)∵∠OAB=90°,且点B的坐标为(4,2).
∴A(4,0),
∴A、B关于O点的对称点的坐标为:A1(-4,0),B1(-4,-2).
∴在平面直角坐标系中描出A1、B1点的坐标,再顺次连接就形成了△OA1B1.

(2)∵B1点是抛物线的顶点,其坐标为:(-4,-2),设抛物线的解析式为:y=a(x+4)2-2,且过B(4,2),
∴2=64a-2,
∴a=
1
16

抛物线的解析式为:y=
1
16
(x+4)2-2.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知如图,过O且半径为5的⊙P交x的正半轴于点M(2m,0)、交y轴的负半轴于点D,弧OBM与弧OAM关于x轴对称,其中A、B、C是过点P且垂直于x轴的直线与两弧及圆的交点.
(1)当m=4时,
①填空:B的坐标为______,C的坐标为______,D的坐标为______;
②若以B为顶点且过D的抛物线交⊙P于点E,求此抛物线的函数关系式和写出点E的坐标;
③除D点外,直线AD与②中的抛物线有无其它公共点并说明理由.
(2)是否存在实数m,使得以B、C、D、E为顶点的四边形组成菱形?若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2上的点D、C与x轴上的点A(-6,0)、B(4,0)构成平行四边形ABCD,CD与y轴交于点E(0,6),求a的值及直线BC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2-mx+m-2.
(1)求证:无论m为任何实数,该二次函数的图象与x轴都有两个交点;
(2)当该二次函数的图象经过点(3,6)时,求二次函数的解析式;
(3)将直线y=x向下平移2个单位长度后与(2)中的抛物线交于A、B两点(点A在点B的左边),一个动点P自A点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点B.求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中放置一矩形ABCO,其顶点为A(0,1)、B(-3
3
,1)、C(-3
3
,0)、O(0,0).将此矩形沿着过E(-
3
,1)、F(-
4
3
3
,0)的直线EF向右下方翻折,B、C的对应点分别为B′、C′.
(1)求折痕所在直线EF的解析式;
(2)一抛物线经过B、E、B′三点,求此二次函数解析式;
(3)能否在直线EF上求一点P,使得△PBC周长最小?如能,求出点P的坐标;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,将抛物线C1:y=x2+3先向右平移1个单位,再向下平移7个单位得到抛物线C2.C2的图象与x轴交于A、B两点(点A在点B的左侧).
(1)求抛物线C2的解析式;
(2)若抛物线C2的对称轴与x轴交于点C,与抛物线C2交于点D,与抛物线C1交于点E,连结AD、DB、BE、EA,请证明四边形ADBE是菱形,并计算它的面积;
(3)若点F为对称轴DE上任意一点,在抛物线C2上是否存在这样的点G,使以O、B、F、G四点为顶点的四边形是平行四边形?如果存在,请求出点G的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-
1
2
x2+bx+4
上有不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).
(1)求抛物线的解析式;
(2)如图,抛物线y=-
1
2
x2+bx+4
与x轴和y轴的正半轴分别交于点A和B,M为AB的中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式;
(3)当m,n为何值时,∠PMQ的边过点F?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=-x2+mx+3与x轴的一个交点A(3,0).
(1)你一定能分别求出这条抛物线与x轴的另一个交点B及与y轴的交点C的坐标,试试看;
(2)设抛物线的顶点为D,请在图中画出抛物线的草图.若点E(-2,n)在直线BC上,试判断E点是否在经过D点的反比例函数的图象上,把你的判断过程写出来;
(3)请设法求出tan∠DAC的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,四边形ABCD是边长为5的正方形,以BC的中点O为原点,BC所在直线为x轴建立平面直角坐标系.抛物线y=ax2经过A、O、D三点,图②和图③是把一些这样的小正方形及其内部抛物线部分经过拼组得到的.

(1)a的值为______;
(2)图②中矩形EFGH的面积为______;
(3)图③中正方形PQRS的面积为______.

查看答案和解析>>

同步练习册答案