精英家教网 > 初中数学 > 题目详情
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,与y轴相交一点C,与x轴负半轴相交一点A,且精英家教网OA=OC,有下列5个结论:
①abc>0;②b<a+c;③4a+2b+c>0;④2a+b=0;⑤c+
1a
=-2,
其中正确的结论有
 
.(请填序号)
分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答:解:由抛物线的开口方向向下可推出a<0;
因为对称轴在y轴右侧,对称轴为x=-
b
2a
>0,又因为a<0,∴b>0;
由抛物线与y轴的交点在y轴的正半轴上,
∴c>0故abc<0,①错误;
由图象可知:对称轴x=-
b
2a
=1,
∴2a+b=0,④正确;
由图象可知:当x=-1时,y<0,
∴a-b+c<0,即b>a+c,②错误;
当x=2时,y>0,∴4a+2b+c>0,③正确;
由图象可知:OC=|c|=c (∵c>0),
∵OA=OC,
∴OA=OC=|c|.
则A点的坐标为(-c,0),代入函数解析式可得ac2-bc+c=0,
化简得ac-b+1=0,c+
1
a
=
b
a

又∵-
b
2a
=1,
b
a
=-2,故c+
1
a
=-2,⑤正确.
∴③④⑤正确,
故答案为:③④⑤.
点评:二次函数y=ax2+bx+c系数符号的确定:
(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.
(2)b由对称轴和a的符号确定:由对称轴公式x=-
b
2a
判断符号.
(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.
(4)b2-4ac由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知二次函数y=a(x+1)2+c的图象如图所示,则函数y=ax+c的图象只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax+bx+c的图象与x轴交于点A.B,与y轴交于点 C.

(1)写出A. B.C三点的坐标;(2)求出二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年广东省广州市海珠区九年级上学期期末数学试卷(解析版) 题型:选择题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一个根

C.a+b+c=0          D.当x<1时,y随x的增大而减小

 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax²+bx+c(c≠0)的图像如图4所示,下列说法错误的是:

(A)图像关于直线x=1对称

(B)函数y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的两个根

(D)当x<1时,y随x的增大而增大

查看答案和解析>>

同步练习册答案