精英家教网 > 初中数学 > 题目详情
已知点A(x1,y1),B(x2,y2),在抛物线上,且x1<x2<-2,则y1    y2(填“>”或“=”或“<”)。

试题分析:抛物线,对称轴X=-2,开口向下,已知点A(x1,y1),B(x2,y2),在抛物线上,且x1<x2<-2,所以点A、B都在抛物线对称轴的左边,y随
X的增大而增大,所以y1<y2
点评:本题考查抛物线,要求考生掌握抛物线的性质,顶点坐标,对称轴,开口方向,单调性等,从而比较大小
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为 [m,1-m,-1]的函数的一些结论:
① 当m=-1时,函数图象的顶点坐标是(1,0);
② 当m>0时,函数图象截x轴所得的线段长度大于1;
③ 当m<0时,函数在x>时,y随x的增大而减小;
④ 不论m取何值,函数图象经过一个定点.
其中正确的结论有            ( )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知抛物线y=-x2bx+c经过点A(0,1)、B(3,)两点,BC⊥x轴,垂足为C.点P是线段AB上的一动点(不与A,B重合),过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.

(1)求此抛物线的函数表达式;
(2)连结AM、BM,设△AMB的面积为S,求S关于t的函数关系式,并求出S的最大值;
(3)连结PC,当t为何值时,四边形PMBC是菱形.(10分)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线与x轴交与两点,
(1)求该抛物线的解析式;
(2)设(1)中的抛物线与y轴交于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线轴于两点,交轴于点,对称轴为直线。且A、C两点的坐标分别为

(1)求抛物线的解析式;
(2)在对称轴上是否存在一个点,使的周长最小.若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数为常数),当取不同的值时,其图象构成一个“抛物线系”.下图分别是当时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是__________________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,点C(,0),点D(0,1),CD的中垂线交CD于点E,交y轴于点B,点P从点C出发沿CO方向以每秒个单位的速度运动,同时点Q从原点O出发沿OD方向以每秒1个单位的速度向点D运动,当点Q到达点D时,点P,Q同时停止运动,设运动的时间为秒。

(1)求出点B的坐标。
(2)当为何值时,△POQ与△COD相似?
(3)当点P在x轴负半轴上时,记四边形PBEQ的面积为S,求S关于的函数关系式,并写出自变量的取值范围;
(4)在点P、Q的运动过程中,将△POQ绕点O旋转1800,点P的对应点P′,点Q的对应点Q′,当线段P′Q′与线段BE有公共点时,抛物线经过P′Q′的中点,此时的抛物线与x轴正半轴交于点M。由已知,直接写出:
的取值范围为                
②点M移动的平均速度是               

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知菱形ABCD的边长为2,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.

(1)求这条抛物线的函数解析式;
(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<
①当t=1时,△ADF与△DEF是否相似?请说明理由;
②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,E是正方形ABCD的边AB上的动点, EF⊥DE交BC于点F.若正方形的边长为4, AE=,BF=.则 的函数关系式为          

查看答案和解析>>

同步练习册答案