精英家教网 > 初中数学 > 题目详情
13.如图,矩形ABCD中,BC=3,AB=4,点E在AB上,点F在CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE=$\frac{7}{8}$.

分析 首先连接EF交BD于O,由矩形ABCD中,四边形EGFH是菱形,易证得△CDOF≌△BOE(AAS),即可得OB=OD,然后由勾股定理求得BD的长,继而求得OD的长,又由△DOF∽△DCB,利用相似三角形的对应边成比例,即可求得答案.

解答 解:连接EF交BD于O,

∵四边形EGFH是菱形,
∴EF⊥BD,OE=OF,
∵四边形ABCD是矩形,
∴∠A=∠C=90°,AB∥CD,AB=DC=4,
∴∠ABO=∠FDO,
在△OEB与△OFD中,
$\left\{\begin{array}{l}{∠EBO=∠FDO}\\{∠EOB=∠FOD}\\{OE=OF}\end{array}\right.$,
∴△OEB≌△OFD(AAS),
∴BO=DO,
∵AC=$\sqrt{B{C}^{2}+D{C}^{2}}$=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∴BO=$\frac{1}{2}$AC=$\frac{5}{2}$,
∵∠ODF=∠BDC,∠DOF=∠C=90°,
∴△DOF∽△DCB,
∴$\frac{DO}{DC}$=$\frac{DF}{BD}$,
∴$\frac{\frac{5}{2}}{4}$=$\frac{DF}{5}$,
∴DF=$\frac{25}{8}$,
∴BE=DF=$\frac{25}{8}$,
∴AE=AB-BE=4-$\frac{25}{8}$=$\frac{7}{8}$,
故答案为:$\frac{7}{8}$.

点评 此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,3),B(1,2),△AOB绕点O逆时针旋转90°后得到△A1OB1
(1)画出△A1OB1,直接写出点B1关于点O的对称点B2的坐标;
(2)请直接写出:以A、B、O、C为顶点的平行四边形的第四个顶点C的坐标;
(3)请直接写出:在旋转过程中,点B经过的路径的长;
(4)求在旋转过程中,线段AB所扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,平行四边形ABCD的对角线相交于点O,过点O的任意一条直线与边AD相交于点E,与边BC相交于点F,求证:OE=OF.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AB=1,∠B=60°,则△ACD的面积为(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.已知一个正比例函数的图象与一个反比例函数的图象的一个交点为(1,3),则另一个交点坐标是(-1,-3).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列判断中,正确的是(  )
A.有理数是有限小数B.无理数都是无限小数
C.无限小数是无理数D.无理数没有算术平方根

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.用配方解方程3x2-6x-1=0,则方程可变形为(  )
A.(x-3)2=$\frac{1}{3}$B.3(x-1)2=$\frac{1}{3}$C.(3x-1)2=1D.(x-1)2=$\frac{4}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列事件中,是必然事件的是(  )
A.掷一枚均匀的六面体骰子,骰子停止后朝上的点数是6
B.打开电视机,任意选择一个频道,正在播新闻
C.在地球上,抛出去的篮球会下落
D.随机地从0,1,2,…,9这十个数中选取两个数,和为20

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,已知AB∥EF,∠C=90°,则α+β-γ=90°.

查看答案和解析>>

同步练习册答案