精英家教网 > 初中数学 > 题目详情
如图,直线PM切⊙O于点M,直线PO交⊙O于A、B两点,弦AC∥PM,连接OM、BC.
求证:(1)△ABC∽△POM;(2)2OA2=OP•BC.

【答案】分析:(1)因为PM切⊙O于点M,所以∠PMO=90°,又因为弦AB是直径,所以∠ACB=∠PMO=90°,再有条件弦AC∥PM,可证得∠CAB=∠P,进而可证得△ABC∽△POM;
(2)由(1)可得,又因为AB=2OA,OA=OM;所以2OA2=OP•BC.
解答:证明:(1)∵直线PM切⊙O于点M,
∴∠PMO=90°,
∵弦AB是直径,
∴∠ACB=90°,
∴∠ACB=∠PMO,
∵AC∥PM,
∴∠CAB=∠P,
∴△ABC∽△POM;

(2)∵△ABC∽△POM,

又AB=2OA,OA=OM,

∴2OA2=OP•BC.
点评:本题考查了切线的性质:①圆的切线垂直于经过切点的半径;②经过圆心且垂直于切线的直线必经过切点;③经过切点且垂直于切线的直线必经过圆心和相似和圆有关的知识,具有一定的综合性.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直线PM切⊙O于点M,直线PO交⊙O于A、B两点,弦AC∥PM,连接OM、BC.
求证:(1)△ABC∽△POM;(2)2OA2=OP•BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•滨州)如图,直线PM切⊙O于点M,直线PO交⊙O于A、B两点,弦AC∥PM,连接OM、BC.
求证:(1)△ABC∽△POM;(2)2OA2=OP•BC.

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(浙江杭州卷)数学 题型:解答题

(2011•滨州)如图,直线PM切⊙O于点M,直线PO交⊙O于A、B两点,弦AC∥PM,连接OM、BC.
求证:(1)△ABC∽△POM;(2)2OA2=OP•BC.

查看答案和解析>>

科目:初中数学 来源:山东省中考真题 题型:解答题

如图,直线PM切⊙O于点M,直线PO交⊙O于A、B两点,弦AC∥PM,连接OM、BC。
求证:(1)△ABC∽△POM;
(2)2OA2=OP·BC。

查看答案和解析>>

同步练习册答案