精英家教网 > 初中数学 > 题目详情
4.分类讨论
已知(x-1)x+6=1,求x的值.

分析 结合零指数幂的概念:a0=1(a≠0),进行求解即可.

解答 解:分类讨论:
(1)当x-1=1时,x=2,此时(2-1)2+6=1成立;
(2)当x-1=-1时,x=0,此时(0-1)0+6=1成立;
(3)当x+6=0时,x=-6,此时(-6-1)-6+6=1成立.
综上所述,x的值为:2,0,-6.

点评 本题考查了零指数幂,解答本题的关键在于熟练掌握该零指数幂的概念:a0=1(a≠0).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.如图,两个半圆中,长为24的弦AB与直径CD平行且与小半圆相切,那么图中阴影部分的面积等于72π.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,直线y=-x+3与x轴、y轴分别相交于B、C两点,经过B、C两点的抛物线y=-ax2+2x+3a(a≠0)与x轴的另一个交点为A点.
(1)求a的值.
(2)点E从点C出发.以每秒$\sqrt{2}$个单位长度的速度沿CB方向向点B运动,过点E作x轴的垂线,垂足为点P,垂线与抛物线相交于点F,设运动的时间为t秒,EF的长为l,请求出l关于t的关系式.
(3)在(2)的条件下,当点E出发的同时.点D从点O出发.以每秒1个单位的速度沿y轴向上运动,此时点D的坐标为(0,t),当点E到达点B时,E、D均停止运动.连接DF、OE,若四边形ODFE为平行四边形.
①求t的值;
②抛物线上是否存在点M.使直线AM平分四边形ODFE的周长,若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,直线AB与x轴的负半轴、y轴的正半轴分别交于点A、点B,M为线段AB的中点,以OM为直径的⊙P分别交x轴、y轴于点C、点D,交直线AB于点E,OB=8,∠OAB=30°.
(1)求证:点C为OA的中点;
(2)求点E的坐标;
(3)若点C在x轴上关于点O的对称点为点F,连结EF,试问在y轴上是否存在点Q,使以点E、F、Q为顶点的三角形为直角三角形.如果存在,直接写出所有满足条件的点Q的坐标;如不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.(1)当5:15时,时针与分针的夹角是$\frac{135}{2}$度;
(2)1:30时针与分针成135度的角;
(3)3点40分时针与分针成130度的角.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,写出平面直角坐标系中点A,B,C,D,E,F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,直线y=2x-2分别与x轴、y轴相交于M,N两点,并且与双曲线y=$\frac{k}{x}$(k>0)相交于A,B两点,过点A作AC⊥y轴于点C,过点B作BD⊥x轴于点D,AC与BD的延长线交于点E(m,n).
(1)求证:$\frac{EC}{EA}$=$\frac{ED}{EB}$;
(2)若$\frac{AM}{BM}$=$\frac{1}{2}$,求$\frac{k}{x}$>2x-2的x的取值范围;
(3)在(2)的条件下,P为双曲线上一点,以OB,OP为邻边作平行四边形,且平行四边形的周长最小,求第四个顶点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,坐标系中抛物线是函数y=ax2+bx+c的图象,则下列式子能成立的是(  )
A.abc>0B.a+b+c<0C.b<a+cD.4a+2b+c>0

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图三角板ABC中,∠BAC=90°,∠B=60°,把△ABC绕点A逆时针旋转30°得到△ADE,连接CE,则∠CED=45°.

查看答案和解析>>

同步练习册答案