精英家教网 > 初中数学 > 题目详情

如图,AD是△ABC的角平分线,AB=AC+DC,求证:∠C=2∠B.

证明:在AB上截取AE=AC,连结DE,如图,
∵AB=AC+DC,
而AE=AC,AB=AE+EC,
∴BE=DC,
∵AD是△ABC的角平分线,
∴∠EAD=∠CAD,
在△AED和△ACD中

∴△AED≌△ACD(SAS),
∴DE=DC,∠AED=∠C,
∴ED=EB,
∴∠B=∠EDB,
∵∠AED=∠B+∠EDB,
∴∠AED=2∠B,
∴∠C=2∠B.
分析:在AB上截取AE=AC,连结DE,由AB=AC+DC可得到BE=DC,根据角平分线定理可得到∠EAD=∠CAD,然后利用“SAS”可判断△AED≌△ACD,则DE=DC,∠AED=∠C,所以ED=EB,根据等腰三角形的性质得∠B=∠EDB,利用三角形外角性质得∠AED=∠B+∠EDB,然后代换后即可得到结论.
点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等腰三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,AD是△ABC的高线,且AD=2,若将△ABC及其高线平移到△A′B′C′的位置,则A′D′和B′D′位置关系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC是角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AD是△ABC的角平分线,且 AB:AC=3:2,则△ABD与△ACD的面积之比为
3:2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm.
(1)求△ABD与△ACD的周长之差.
(2)若AB边上的高为2cm,求AC边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为(  )

查看答案和解析>>

同步练习册答案