【题目】如图,在中,.点从点出发,沿方向以每秒个单位长度的速度向终点运动(点不与重合),过点作交折线于点以为边问下作正方形点落在边上设点运动的时间为(秒).
(1)直接用含的代数式表示线段的长.
(2)当点落在边上时,求的值.
(3)当正方形与重叠部分图形为四边形时,设四边形的面积为(平方单位),求与之间的函数关系式.
(4)点为边的中点,直接写出直线将正方形分成的两部分图形的面积比为时的值.
【答案】(1)当时,.当时,;(2);(3)当时.;当时.;(4)或
【解析】
(1)需分点Q在AB上和BC上两种情况,结合锐角三角函数即可求得对应的AP的长;
(2)表示出AP,PN,NC,用AB=AP+PN+NC,即可求出;
(3)由(2)知,需分为或两部分讨论;
(4)由PF分正方形面积为1:2的两部分,得出比例关系,使用平行线分线段成比例,计算结果.
(1)作,垂足为D
∵,BC=4,AB=3,
∴AC=5
∵
∴
∴
∴
点Q在AB上时,如图所示
在中,BC=4,AB=3,,
在中,,则()
当点Q在BC上时,如图所示:
在中,BC=4,AB=3,,
在中,,则()
综上:当时,.当时,
(不写取值范围不扣分)
(2)当点落在边上时,如图所示
由(1)知,,
在中,
∴AB=AP+PN+NC=解得
(3)由(2)知,正方形与重叠部分图形为四边形时
的取值范围是:或
当时.此时重合部分为正方形PQMN整体,则
当时.如图所示:
∴,
在中,
∴
(4)当时,如图所示:
此时
直线PF将正方形PQMN分成1:2的两部分,即
∴即,
∴
在中,,
∴
作,垂足为H,
则
又
∴
∴,解得
当时,如图所示:
同上可知:
由,得
又
∴,即
又F为BC中点
∴即
∴,解得
综上:或.
科目:初中数学 来源: 题型:
【题目】在平行四边形ABCD中,点E在AD边上,连接BE、CE,EB平分∠AEC .
(1)如图1,判断△BCE的形状,并说明理由;
(2)如图2,若∠A=90°,BC=5,AE=1,求线段BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在新冠状病毒的影响下,某学校积极响应政府号召,开展了“停课不停学”网上授课工作,为了网上授课工作顺利开展和取得良好成效,该校在授课第一周和授课第二周分别随机抽取部分学生进行“网上授课教学效果反馈”网上调查,并将调查结果绘制成如下两幅不完整的统计图,调查显示:两次调查反馈教学效果为“较差”人数相等,第二周反馈教学效果为“很好”人数比例比第一周多,请根据调查显示和统计图中的信息解决下列问题:
在图1中,表示“较好”的扇形圆心角的度数为_ 度,并把图2条形统计图补充完整;
若把调查反馈教学效果“很好”和“较好”作为网上授课成效良好的标准,该校大约有名学生,请估计授课第二周学校网上授课成效良好的学生人数;
有一位家长认为,两次调查反馈授课效果为“较差”人数相等,因此学校在一周后调整的措施并没有提高网上授课效果,这位家长分析数据的方法合理吗?请结合统计图,对这位家长分析数据的方法及学校在一周后调整措施对网上授课效果的影响谈谈你的看法.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在抛物线上,则y1>y2>y3;③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;④当n=﹣时,△ABP为等腰直角三角形.其中正确结论是______(填写序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为加快5G网络建设,某通信公司在一个坡度i=1:2.4的山坡AB上建了一座信号塔CD,信号塔底端C到山脚A的距离AC=13米,在距山脚A水平距离18米的E处,有一高度为10米的建筑物EF,在建筑物顶端F处测得信号塔顶端D的仰角为37°(信号塔及山坡的剖面和建筑物的剖面在同一平面上),则信号塔CD的高度约是( )(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A.22.5米B.27.5米C.32.5米D.45.0米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了了解九年级学生上学期间平均每天的睡眠情况,现从全校名九年级学生中随机抽取了部分学生,调查了这些同学上学期间平均每天的睡眠时间(单位:小时),并根据调查结果列出统计表,绘制成扇形统计图,如图所示.请你根据图表提供的信息解答下列问题:
平均每天睡眠时间分组统计表
组别序号 | 睡眠时间(小时) | 人数(频数) |
组 | ||
组 | ||
组 | ||
组 |
平均每天睡眠时间扇形统计表
(1)_______,_______,_______(为百分号前的数字);
(2)随机抽取的这部分学生平均每天睡眠时间的中位数落在_______组(填组别序号);
(3)估计全校名九年级学生中平均每天睡眠时间不低于小时的学生有_______名;
(4)若所抽查的睡眠时间(小时)的名学生,其中名男生和名女生,现从这名学生中随机选取名学生参加个别访谈,请用列表或画树状图的方法求选取的名学生恰为男女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知抛物线y=+bx+c与x轴交于点A、,与y轴交于点,直线经过B、C两点. 抛物线的顶点为D.
(1)求抛物线和直线的解析式;
(2)判断△BCD的形状并说明理由.
(3)如图②,若点E是线段BC上方的抛物线上的一个动点,过E点作EF⊥x轴于点F,EF交线段BC于点G,当△ECG是直角三角形时,求点E的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com