【题目】已知:关于x的方程:mx2﹣(3m﹣1)x+2m﹣2=0.
(1)求证:无论m取何值时,方程恒有实数根;
(2)若关于x的二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2时,求抛物线的解析式.
【答案】(1)分与两种情况讨论,再结合一元二次方程的根的判别式即可判断;
(2)
【解析】
试题(1)、分两种情况讨论:①当m=0时,方程为一元一次方程,若能求出解,则方程有实数根;
②当m≠0时,方程为一元二次方程,计算出△的值为非负数,可知方程有实数根.(2)、根据二次函数与x轴的交点间的距离公式,求出m的值,从而得到抛物线的解析式.
试题解析:(1)、①当m=0时,原方程可化为x﹣2=0,解得x=2;②当m≠0时,方程为一元二次方程,
△=[﹣(3m﹣1)]2﹣4m(2m﹣2) =m2+2m+1 =(m+1)2≥0,故方程有两个实数根;
故无论m为何值,方程恒有实数根.
(2)、∵二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2,
∴=2, 整理得,3m2﹣2m﹣1=0, 解得m1=1,m2=﹣.
则函数解析式为y=x2﹣2x或y=﹣x2+2x﹣.
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,已知AD是角平分线,∠B=66°,∠C=54°.
(1)求∠ADB的度数;
(2)若DE⊥AC于点E,求∠ADE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在方格纸中,已知格点△ABC和格点O.
(1)画出△ABC关于点O对称的△A1B1C1;
(2)画出△ABC绕点O顺时针旋转90°的△A2B2C2 ;
(3)若以点A、O、C、D为顶点的四边形是平行四边形,则点D的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请在下列横线上注明理由.
如图,在中,点,,在边上,点在线段上,若,,点到和的距离相等.求证:点到和的距离相等.
证明:∵(已知),
∴(______),
∴(______),
∵(已知),
∴(______),
∵点到和的距离相等(已知),
∴是的角平分线(______),
∴(角平分线的定义),
∴(______),
即平分(角平分线的定义),
∴点到和的距离相等(______).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,B、C、D在同一直线上,△ABC和△ECD都是等边三角形,BE与AD相交于点M,
(1)求证:∠CBE=∠CAD;
(2)由(1)可知,图中的△EBC是由△DAC怎样变换(填一种变换)得到的.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是-2.
(1)求这条直线的解析式及点B的坐标;
(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由;
(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下
如图(1)∠DAB=90°,求证:a2+b2=c2
证明:连接DB,过点D作DF⊥BC交BC的延长线于点F,则DF=b-a
S四边形ADCB=
S四边形ADCB=
∴化简得:a2+b2=c2
请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a2+b2=c2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com