精英家教网 > 初中数学 > 题目详情
已知⊙O的半径为2,点P是⊙O外一点,OP的长为3,那么以P为圆心,且与⊙O相切的圆的半径是   
【答案】分析:由⊙O的半径为2,OP的长为3,分别从以P为圆心的圆与⊙O外切或与⊙O内切去分析,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系,即可求得答案.
解答:解:∵⊙O的半径为2,OP的长为3,
若与⊙O外切,则此圆的半径为3-2=1;
若与⊙O内切,则此圆的半径为3+2=5.
∴此圆的半径是1或5.
故答案为:1或5.
点评:此题考查了圆与圆的位置关系.此题难度不大,解题的关键是注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系,注意分类讨论思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、已知⊙O1的半径为3,⊙O2的半径为2,若⊙O1与⊙O2相切,则O1,O2的距离为
5或1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知⊙O的半径为2,以⊙O的弦AB为直径作⊙M,点C是⊙O优弧
AB
上的一个动点(不与精英家教网点A、点B重合).连接AC、BC,分别与⊙M相交于点D、点E,连接DE.若AB=2
3

(1)求∠C的度数;
(2)求DE的长;
(3)如果记tan∠ABC=y,
AD
DC
=x(0<x<3),那么在点C的运动过程中,试用含x的代数式表示y.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知⊙O的半径为4,A为线段PO的中点,当OP=10时,点A与⊙O的位置关系为(  )
A、在圆上B、在圆外C、在圆内D、不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

已知球的半径为R=0.53,根据球的体积公式V=
43
πR3
,求球体的体积(π取3.14,保留两个有效数字)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知圆的半径为4cm,直线和圆相离,则圆心到直线的距离d的取值范围是
d>4cm
d>4cm

查看答案和解析>>

同步练习册答案