精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC三个顶点的坐标分别为A11),B42),C34).

1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1

2)请画出△ABC关于原点对称的△A2B2C2;并写出点A2B2C2坐标;

3)请画出△ABCO逆时针旋转90°后的△A3B3C3;并写出点A3B3C3坐标.

【答案】(1)见解析;(2)见解析,A2(﹣1,﹣1)、B2(﹣4,﹣2)、C2(﹣3,﹣4);(3)见解析,A3(﹣11)、B3(﹣24)、C3(﹣43).

【解析】

1)利用平移的性质得出对应点的位置进而得出答案

2)利用关于原点对称点的性质得出对应点的位置进而得出答案

3)利用旋转的性质得出旋转后的点的坐标进而得出答案

解:(1)如图,△A1B1C1即为所求;

2)如图,△A2B2C2即为所求,A2(﹣1,﹣1)、B2(﹣4,﹣2)、C2(﹣3,﹣4);

3)如图,△A3B3C3即为所求,A3(﹣11)、B3(﹣24)、C3(﹣43).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一次函数ykx-6中,已知yx的增大而减小.下列关于反比例函数y

的描述,其中正确的是( )

A. x>0时,y>0 B. yx的增大而增大

C. yx的增大而减小 D. 图像在第二、四象限

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】扬州漆器名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.

(1)求之间的函数关系式;

(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?

(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB4BC3PBA边上从BA运动,过作PEPC,交AD于点E

1)如图1,当EPPC时,求线段AE的长度;

2)如图2,当PAB中点时,求证:CP平分∠ECB

3)若⊙O直径为CE,则在点P的运动过程中,是否存在⊙OAB相切,若存在,求出⊙O的半径:若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O直径,D为弧AC的中点,DGABG,交ACEACBD相交于F

1)求证:AEDE

2)若AG2DG4,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半径为1的⊙P的圆心在(﹣4,0)处.若⊙P以每秒1个单位长度,沿x轴向右匀速运动.设运动时间为t秒,当⊙P上有且只有2个点到y轴的距离为2,则t的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为坐标原点.已知反比例函数的图象经A(﹣2m),过点作ABx轴.垂足为点B,且△OAB的面积为1

1)求km的值;

2)点Cxy)在反比例的图象上,当1x3时,求函数值y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PEBC于点EPFDC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EFAH于点G,当点PBD上运动时(不包括BD两点),以下结论中:①MFMC;②APEF;③AHEF;④AP2PMPH;⑤EF的最小值是.其中正确结论有( )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y的图象的一个交点为A(1n)

(1)求反比例函数y的表达式.

(2)若两函数图象的另一交点为B,直接写出B的坐标.

查看答案和解析>>

同步练习册答案