精英家教网 > 初中数学 > 题目详情
17.已知y=$\frac{\sqrt{|x|-3}+\sqrt{3-|x|}+12}{x-3}$,求x2y的值.

分析 根据二次根式有意义的条件即可求出x与y的值.

解答 解:由题意可知:$\left\{\begin{array}{l}{|x|-3≥0}\\{3-|x|≥0}\end{array}\right.$
∴|x|=3,
∴x=±3,
又∵x-3≠0,
∴x=-3,
∴y=$\frac{12}{-6}$=-2
∴x2y=9×(-2)=-18

点评 本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.计算
(1)$\sqrt{18}$÷(3$\sqrt{2}$+$\sqrt{3}$);
(2)$\frac{\sqrt{72}-\sqrt{16}}{\sqrt{8}}$-($\sqrt{3}$+$\sqrt{2}$)($\sqrt{3}$-$\sqrt{2}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知抛物线l:y=ax2+bx+c(a≠0)与x轴交于点A、B(3,0)两点(点A在B的左侧),与y轴交于点C(0,3),对称轴为直线x=1,如图1.
(1)求抛物线l的解析式;
(2)将抛物线l向下平移d个单位长度,使平移后所的抛物线的顶点落在△OBC内(包括△OBC的边界),求d的取值范围;
(3)如图2,设点P是抛物线l上任意一点,点D在直线x=-3上,问是否存在这样的点P,使得△PBD是以点P为直角顶点的等腰直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.化简:($\sqrt{x-3}$)2=(  )
A.x-3B.3-xC.x+3D.±(x-3)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某校在七、八年级开展以“百日攻坚战,再上新台阶,建设新南平”为主题的征文活动,校学生会对这两个年级所有班级的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.
(1)投稿2篇的班级个数在扇形统计图中所对应的扇形的圆心角等于30°;
(2)求该校七、八年级各班投稿的平均篇数;
(3)投稿9篇的4个班级中,七、八年级各有两个班,学校准备从这四个中选出两个班代表学校参加上一级的比赛,请你用列表法或画树状图的方法求出所选两个班不在同一年级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,△A1B1C1是边长为1的等边三角形,A2为等边△A1B1C1的中心,连接A2B1并延长到点B2,使A2B1=B1B2,以A2B2为边作等边△A2B2C2,A3为等边△A2B2C2的中心,连接A3B2并延长到点B3,使A3B2=B2B3,以A3B3为边作等边△A3B3C3,依次作下去得到等边△AnBnCn,则等边△A6B6C6的边长为$\frac{32\sqrt{3}}{27}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.因式分解:16x4-4y2=4(2x2+y)(2x2-y).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.已知点A(a,0)和B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则点A的坐标为(4,0)或(-4,0).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,点P的坐标为(x,y),若过点p的直线与x轴夹角为60°时,则称该直线为点P的“相关直线”,
(1)已知点A的坐标为(0,2),求点A的“相关直线”的表达式;
(2)若点B的坐标为(0,$\sqrt{3}$),点B的“相关直线”与直线y=2$\sqrt{3}$交于点C,求点C的坐标;
(3)⊙O的半径为$\sqrt{3}$,若⊙O上存在一点N,点N的“相关直线”与双曲线y=$\frac{3\sqrt{3}}{x}$(x>0)相交于点M,请直接写出点M的横坐标的取值范围.

查看答案和解析>>

同步练习册答案