精英家教网 > 初中数学 > 题目详情
在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同.小明先从口袋里随机不放回地取出一个小球,记下数字为x;小红在剩下有三个小球中随机取出一个小球,记下数字y.
(1)计算由x、y确定的点(x,y)在函数y=-x+6图象上的概率;
(2)小明、小红约定做一个游戏,其规则是:若x、y满足xy>6,则小明胜;若x、y满足xy<6,则小红胜.这个游戏规则公平吗?说明理由;若不公平,怎样修改游戏规则才对双方公平?
分析:(1)画树形图,展示所有可能的12种结果,其中有点(2,4),(4,2)满足条件,根据概率的概念计算即可;
(2)先根据概率的概念分别计算出P(小明胜)=
4
12
=
1
3
;P(小红胜)=
6
12
=
1
2
;判断游戏规则不公平.然后修改游戏规则,使它们的概率相等.
解答:解:(1)画树形图:
精英家教网
所以共有12个点:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),
其中满足y=-x+6的点有(2,4),(4,2),
所以点(x,y)在函数y=-x+6图象上的概率=
2
12
=
1
6


(2)满足xy>6的点有(2,4),(4,2),(4,3),(3,4),共4个;
满足xy<6的点有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1),共6个,
所以P(小明胜)=
4
12
=
1
3
;P(小红胜)=
6
12
=
1
2

1
3
1
2

∴游戏规则不公平.
游戏规则可改为:若x、y满足xy≥6,则小明胜;若x、y满足xy<6,则小红胜.
点评:本题考查了关于游戏公平性的问题:先利用图表或树形图展示所有可能的结果数,然后计算出两个事件的概率,若它们的概率相等,则游戏公平;若它们的概率不相等,则游戏不公平.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在一个不透明的口袋里装有4个球,分别是红球2个,黄球1个,绿球1个,它们除颜色不同外其余都相同.闭上眼睛搅拌均匀后,第1次从袋中任意摸出1球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据
摸球的次数n 100 150 200 500 800 1000
摸到白球的次数m 58 96 116 295 484 601
摸到白球的频率
m
n
0.58 0.64 0.58 0.59 0.605 0.601
(1)请你估计,当n很大时,摸到白球的频率将会接近
 
(精确到0.1).
(2)假如你去摸一次,你摸到白球的概率是
 
,摸到黑球的概率是
 

(3)试估算口袋中黑、白两种颜色的球有多少只.

查看答案和解析>>

科目:初中数学 来源: 题型:

在一个不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个,蓝球1个.若从中任意摸出一个球,它是蓝球的概率为
14

(1)求袋中黄球的个数;
(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,求两次摸到球的颜色是红色与黄色这种组合(不考虑红、黄球顺序)的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•常州)在一个不透明的口袋里装有白、红、黑三种颜色的小球,其中白球2只,红球1只,黑球1只,它们除了颜色之外没有其它区别,从袋中随机地摸出1只球,记录下颜色后放回搅匀,再摸出第二只球并记录颜色,求两次都摸出白球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共5只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:
摸球的次数n 100 150 200 500 800 1000
摸到白球的次数m 58 96 116 295 484 601
摸到白球的次数频率 0.58 0.64 0.58 0.59 0.605 0.601
(1)试估算口袋中黑、白两种颜色的球各有多少只?
(2)请画树状图或列表计算:从中一次摸两只球,这两只球颜色不同的概率是多少?

查看答案和解析>>

同步练习册答案