【题目】(本题10分)如图,过抛物线上一点A作轴的平行线,交抛物线于另一点B,交轴于点C,已知点A的横坐标为.
(1)求抛物线的对称轴和点B的坐标;
(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;
①连结BD,求BD的最小值;
②当点D落在抛物线的对称轴上,且在轴上方时,求直线PD的函数表达式.
【答案】(1)x=4;B(10,5).(2)①.②y=﹣x+.
【解析】
试题分析:(1)确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;
(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB﹣OD;
②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE==3,求出P、D的坐标即可解决问题.
试题解析:(1)由题意A(﹣2,5),对称轴x=﹣=4,
∵A、B关于对称轴对称,
∴B(10,5).
(2)①如图1中,
由题意点D在以O为圆心OC为半径的圆上,
∴当O、D、B共线时,BD的最小值=OB﹣OD=.
②如图2中,
图2
当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,
∴DE==3,
∴点D的坐标为(4,3).
设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,
∴x=,
∴P(,5),
∴直线PD的解析式为y=﹣x+.
科目:初中数学 来源: 题型:
【题目】α与β的度数分别是2m-19和77-m,且α与β都是γ的补角,那么α与β的关系是( )
A. 不互余且不相等B. 不互余但相等
C. 互为余角但不相等D. 互为余角且相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.
(1)当∠APB=28°时,求∠B和的度数;
(2)求证:AC=AB。
(3)在点P的运动过程中
①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;
②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:
一次函数与方程的关系:
①一次函数的解析式就是一个二元一次方程;
②点B的横坐标是方程①的解;
③点C的坐标(x,y)中的x,y的值是方程组②的解
一次函数与不等式的关系:
①函数y=kx+b的函数值y小于0时,自变量x的取值范围就是不等式③的解集;
②函数y=kx+b的函数值y大于0时,自变量x的取值范围就是不等式④的解集.
(1)请根据以上方框中的内容在下面数学序号后写出相应的式子:
①;②;③;④;
(2)如果点C的坐标为(2,5),那么不等式kx+b≥k1x+b1的解集是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数学课上,老师提出如下问题:
已知:如图, 及AC边的中点O,
求作:平行四边形ABCD
小敏的作法如下:
① 连接BO并延长,在延长线上截取OD=BO
② 连接DA、DC,
所以四边形ABCD就是所求作的平行四边形。
老师说:”小敏的作法正确.“
请回答:小敏的作法正确的理由是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com